SyzygyData

Current Betti Table Entry:

\(n=2\)

\(d=8\)

\(b=7\)

\(p=1\)

\(q=0\)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 36 1484 29820 389172 3708040 27490008 165029592 824337800 3493693476 12747259980 40486976348 112899806292 278236489440 609047053216 1188443771040 2072120979936 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · ·
1 · · · · · · · · · · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 566544888 116257960 19789224 2720760 290444 22596 1140 28
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 (7,0,0) (14,1,0) (21,1,1) (27,3,1) (33,4,2) (39,4,4) (44,7,4) (49,9,5) (54,10,7) (59,10,10) (63,14,10) (67,17,11) (71,19,13) (75,20,16) (79,20,20) (82,25,20) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · ·
1 · · · · · · · · · · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (118,98,79) (119,98,86) (119,104,88) (119,109,91) (119,113,95) (119,116,100) (119,118,106) (119,119,113)
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 1 7 48 86 129 175 224 274 326 377 425 472 519 564 601 635 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · ·
1 · · · · · · · · · · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 262 212 166 121 81 43 6 1
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 1 7 86 772 5549 32863 164018 701858 2608474 8504414 24514745 62864456 144095569 296296544 547932476 912602873 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · ·
1 · · · · · · · · · · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 504382 121362 25006 4344 624 72 6 1
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{1,\lambda}(2,7;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{1,0}(2,7;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!

7 8 9 10 11 12 13 14 15
0 · · · · · · · · ·
1 · · · · · · · 1 ·
2 · · · · · · 1 · ·
3 · · · · · 1 · · ·
4 · · · · 1 · · · ·
5 · · · 1 · · · · ·
6 · · 1 · · · · · ·
7 · 1 · · · · · · ·
8 · · · · · · · · ·

Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{1,\textbf{a}}(2,7;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 · 1 2 3 4 5 6 7 7 6 5 4 3 2 1 ·
1 1 3 5 7 9 11 13 14 13 11 9 7 5 3 1 ·
2 2 5 8 11 14 17 19 19 17 14 11 8 5 2 · ·
3 3 7 11 15 19 22 23 22 19 15 11 7 3 · · ·
4 4 9 14 19 23 25 25 23 19 14 9 4 · · · ·
5 5 11 17 22 25 26 25 22 17 11 5 · · · · ·
6 6 13 19 23 25 25 23 19 13 6 · · · · · ·
7 7 14 19 22 23 22 19 14 7 · · · · · · ·
8 7 13 17 19 19 17 13 7 · · · · · · · ·
9 6 11 14 15 14 11 6 · · · · · · · · ·
10 5 9 11 11 9 5 · · · · · · · · · ·
11 4 7 8 7 4 · · · · · · · · · · ·
12 3 5 5 3 · · · · · · · · · · · ·
13 2 3 2 · · · · · · · · · · · · ·
14 1 1 · · · · · · · · · · · · · ·
15 · · · · · · · · · · · · · · · ·