Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(7,0,0) |
(14,1,0) |
(21,1,1) |
(27,3,1) |
(33,4,2) |
(39,4,4) |
(44,7,4) |
(49,9,5) |
(54,10,7) |
(59,10,10) |
(63,14,10) |
(67,17,11) |
(71,19,13) |
(75,20,16) |
(79,20,20) |
(82,25,20) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(118,98,79) |
(119,98,86) |
(119,104,88) |
(119,109,91) |
(119,113,95) |
(119,116,100) |
(119,118,106) |
(119,119,113) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
1 |
7 |
48 |
86 |
129 |
175 |
224 |
274 |
326 |
377 |
425 |
472 |
519 |
564 |
601 |
635 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
262 |
212 |
166 |
121 |
81 |
43 |
6 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(119,119,113)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: Yes
\(\textbf{a}=(116,118,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,119,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,119,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,118,114)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,119,114)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,117,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,116,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,118,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,115,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,119,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,119,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{42,\lambda}(2,7;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{42,1}(2,7;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
118 |
119 |
120 |
118 |
· |
· |
· |
119 |
· |
1
| · |
120 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{42,\textbf{a}}(2,7;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
113 |
· |
· |
· |
· |
· |
· |
1
| · |
114 |
· |
· |
· |
· |
· |
1
| 1
| · |
115 |
· |
· |
· |
· |
1
| 1
| 1
| · |
116 |
· |
· |
· |
1
| 1
| 1
| 1
| · |
117 |
· |
· |
1
| 1
| 1
| 1
| 1
| · |
118 |
· |
1
| 1
| 1
| 1
| 1
| 1
| · |
119 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
120 |
· |
· |
· |
· |
· |
· |
· |
· |