Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(7,0,0) |
(14,1,0) |
(21,1,1) |
(27,3,1) |
(33,4,2) |
(39,4,4) |
(44,7,4) |
(49,9,5) |
(54,10,7) |
(59,10,10) |
(63,14,10) |
(67,17,11) |
(71,19,13) |
(75,20,16) |
(79,20,20) |
(82,25,20) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(118,98,79) |
(119,98,86) |
(119,104,88) |
(119,109,91) |
(119,113,95) |
(119,116,100) |
(119,118,106) |
(119,119,113) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
1 |
7 |
48 |
86 |
129 |
175 |
224 |
274 |
326 |
377 |
425 |
472 |
519 |
564 |
601 |
635 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
262 |
212 |
166 |
121 |
81 |
43 |
6 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(113,113,101)\)
- Multiplicity: 3
- Dimension: 91
- Dominant: No
\(\lambda=(115,109,103)\)
- Multiplicity: 17
- Dimension: 343
- Dominant: No
\(\lambda=(118,111,98)\)
- Multiplicity: 8
- Dimension: 1232
- Dominant: No
\(\lambda=(117,105,105)\)
- Multiplicity: 2
- Dimension: 91
- Dominant: No
\(\lambda=(116,115,96)\)
- Multiplicity: 3
- Dimension: 440
- Dominant: No
\(\lambda=(110,110,107)\)
- Multiplicity: 3
- Dimension: 10
- Dominant: No
\(\lambda=(113,112,102)\)
- Multiplicity: 8
- Dimension: 143
- Dominant: No
\(\lambda=(115,108,104)\)
- Multiplicity: 15
- Dimension: 260
- Dominant: No
\(\lambda=(118,110,99)\)
- Multiplicity: 10
- Dimension: 1134
- Dominant: No
\(\lambda=(116,114,97)\)
- Multiplicity: 6
- Dimension: 567
- Dominant: No
\(\lambda=(110,109,108)\)
- Multiplicity: 1
- Dimension: 8
- Dominant: No
\(\lambda=(113,111,103)\)
- Multiplicity: 11
- Dimension: 162
- Dominant: No
\(\lambda=(115,107,105)\)
- Multiplicity: 9
- Dimension: 162
- Dominant: No
\(\lambda=(118,109,100)\)
- Multiplicity: 11
- Dimension: 1000
- Dominant: No
\(\lambda=(116,113,98)\)
- Multiplicity: 9
- Dimension: 640
- Dominant: No
\(\lambda=(113,110,104)\)
- Multiplicity: 15
- Dimension: 154
- Dominant: No
\(\lambda=(115,106,106)\)
- Multiplicity: 5
- Dimension: 55
- Dominant: No
\(\lambda=(118,108,101)\)
- Multiplicity: 10
- Dimension: 836
- Dominant: No
\(\lambda=(116,112,99)\)
- Multiplicity: 12
- Dimension: 665
- Dominant: No
\(\lambda=(113,109,105)\)
- Multiplicity: 11
- Dimension: 125
- Dominant: No
\(\lambda=(118,107,102)\)
- Multiplicity: 9
- Dimension: 648
- Dominant: No
\(\lambda=(119,113,95)\)
- Multiplicity: 1
- Dimension: 1729
- Dominant: Yes
\(\lambda=(116,111,100)\)
- Multiplicity: 15
- Dimension: 648
- Dominant: No
\(\lambda=(113,108,106)\)
- Multiplicity: 10
- Dimension: 81
- Dominant: No
\(\lambda=(114,114,99)\)
- Multiplicity: 4
- Dimension: 136
- Dominant: No
\(\lambda=(117,116,94)\)
- Multiplicity: 1
- Dimension: 575
- Dominant: No
\(\lambda=(118,106,103)\)
- Multiplicity: 7
- Dimension: 442
- Dominant: No
\(\lambda=(119,112,96)\)
- Multiplicity: 1
- Dimension: 1700
- Dominant: No
\(\lambda=(116,110,101)\)
- Multiplicity: 18
- Dimension: 595
- Dominant: No
\(\lambda=(111,111,105)\)
- Multiplicity: 3
- Dimension: 28
- Dominant: No
\(\lambda=(113,107,107)\)
- Multiplicity: 2
- Dimension: 28
- Dominant: No
\(\lambda=(114,113,100)\)
- Multiplicity: 7
- Dimension: 224
- Dominant: No
\(\lambda=(117,115,95)\)
- Multiplicity: 2
- Dimension: 756
- Dominant: No
\(\lambda=(118,105,104)\)
- Multiplicity: 3
- Dimension: 224
- Dominant: No
\(\lambda=(119,111,97)\)
- Multiplicity: 2
- Dimension: 1620
- Dominant: No
\(\lambda=(116,109,102)\)
- Multiplicity: 17
- Dimension: 512
- Dominant: No
\(\lambda=(111,110,106)\)
- Multiplicity: 6
- Dimension: 35
- Dominant: No
\(\lambda=(114,112,101)\)
- Multiplicity: 12
- Dimension: 270
- Dominant: No
\(\lambda=(119,110,98)\)
- Multiplicity: 3
- Dimension: 1495
- Dominant: No
\(\lambda=(117,114,96)\)
- Multiplicity: 4
- Dimension: 874
- Dominant: No
\(\lambda=(116,108,103)\)
- Multiplicity: 16
- Dimension: 405
- Dominant: No
\(\lambda=(111,109,107)\)
- Multiplicity: 3
- Dimension: 27
- Dominant: No
\(\lambda=(114,111,102)\)
- Multiplicity: 15
- Dimension: 280
- Dominant: No
\(\lambda=(119,109,99)\)
- Multiplicity: 3
- Dimension: 1331
- Dominant: No
\(\lambda=(117,113,97)\)
- Multiplicity: 6
- Dimension: 935
- Dominant: No
\(\lambda=(116,107,104)\)
- Multiplicity: 12
- Dimension: 280
- Dominant: No
\(\lambda=(111,108,108)\)
- Multiplicity: 3
- Dimension: 10
- Dominant: No
\(\lambda=(114,110,103)\)
- Multiplicity: 18
- Dimension: 260
- Dominant: No
\(\lambda=(119,108,100)\)
- Multiplicity: 4
- Dimension: 1134
- Dominant: No
\(\lambda=(117,112,98)\)
- Multiplicity: 9
- Dimension: 945
- Dominant: No
\(\lambda=(116,106,105)\)
- Multiplicity: 6
- Dimension: 143
- Dominant: No
\(\lambda=(114,109,104)\)
- Multiplicity: 16
- Dimension: 216
- Dominant: No
\(\lambda=(119,107,101)\)
- Multiplicity: 4
- Dimension: 910
- Dominant: No
\(\lambda=(117,111,99)\)
- Multiplicity: 11
- Dimension: 910
- Dominant: No
\(\lambda=(115,115,97)\)
- Multiplicity: 1
- Dimension: 190
- Dominant: No
\(\lambda=(112,112,103)\)
- Multiplicity: 6
- Dimension: 55
- Dominant: No
\(\lambda=(114,108,105)\)
- Multiplicity: 13
- Dimension: 154
- Dominant: No
\(\lambda=(119,106,102)\)
- Multiplicity: 3
- Dimension: 665
- Dominant: No
\(\lambda=(118,116,93)\)
- Multiplicity: 1
- Dimension: 972
- Dominant: Yes
\(\lambda=(117,110,100)\)
- Multiplicity: 14
- Dimension: 836
- Dominant: No
\(\lambda=(115,114,98)\)
- Multiplicity: 4
- Dimension: 323
- Dominant: No
\(\lambda=(112,111,104)\)
- Multiplicity: 8
- Dimension: 80
- Dominant: No
\(\lambda=(114,107,106)\)
- Multiplicity: 7
- Dimension: 80
- Dominant: No
\(\lambda=(119,105,103)\)
- Multiplicity: 2
- Dimension: 405
- Dominant: No
\(\lambda=(118,115,94)\)
- Multiplicity: 2
- Dimension: 1144
- Dominant: No
\(\lambda=(117,109,101)\)
- Multiplicity: 14
- Dimension: 729
- Dominant: No
\(\lambda=(115,113,99)\)
- Multiplicity: 7
- Dimension: 405
- Dominant: No
\(\lambda=(112,110,105)\)
- Multiplicity: 11
- Dimension: 81
- Dominant: No
\(\lambda=(115,112,100)\)
- Multiplicity: 12
- Dimension: 442
- Dominant: No
\(\lambda=(118,114,95)\)
- Multiplicity: 3
- Dimension: 1250
- Dominant: No
\(\lambda=(119,104,104)\)
- Multiplicity: 1
- Dimension: 136
- Dominant: No
\(\lambda=(117,108,102)\)
- Multiplicity: 14
- Dimension: 595
- Dominant: No
\(\lambda=(112,109,106)\)
- Multiplicity: 9
- Dimension: 64
- Dominant: No
\(\lambda=(115,111,101)\)
- Multiplicity: 14
- Dimension: 440
- Dominant: No
\(\lambda=(118,113,96)\)
- Multiplicity: 5
- Dimension: 1296
- Dominant: No
\(\lambda=(117,107,103)\)
- Multiplicity: 11
- Dimension: 440
- Dominant: No
\(\lambda=(112,108,107)\)
- Multiplicity: 5
- Dimension: 35
- Dominant: No
\(\lambda=(115,110,102)\)
- Multiplicity: 18
- Dimension: 405
- Dominant: No
\(\lambda=(118,112,97)\)
- Multiplicity: 7
- Dimension: 1288
- Dominant: No
\(\lambda=(117,106,104)\)
- Multiplicity: 8
- Dimension: 270
- Dominant: No
\(\lambda=(116,116,95)\)
- Multiplicity: 2
- Dimension: 253
- Dominant: No
\(\textbf{a}=(97,113,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,105)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,98)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,119,110)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,112)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,106,117)\)
- Multiplicity: 311
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,103)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,110)\)
- Multiplicity: 2018
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,99,117)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,103)\)
- Multiplicity: 1230
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,96)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,110)\)
- Multiplicity: 2018
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,108)\)
- Multiplicity: 89
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,98,110)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,112,115)\)
- Multiplicity: 365
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,108)\)
- Multiplicity: 2811
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,101)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,105,115)\)
- Multiplicity: 995
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,108)\)
- Multiplicity: 919
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,94)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,101)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,118,113)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,98,115)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,106)\)
- Multiplicity: 311
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,113)\)
- Multiplicity: 1230
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,106)\)
- Multiplicity: 2479
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,99)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,113)\)
- Multiplicity: 1523
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,111,118)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,106)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,99)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,111)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,113)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,104,118)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,104)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,111)\)
- Multiplicity: 2479
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,97,118)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,117,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,104)\)
- Multiplicity: 1252
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,97)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,111)\)
- Multiplicity: 1230
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,109)\)
- Multiplicity: 451
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,110,116)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,102)\)
- Multiplicity: 658
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,109)\)
- Multiplicity: 3131
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,103,116)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,95)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,102)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,109)\)
- Multiplicity: 451
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,114)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,96,116)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,107)\)
- Multiplicity: 995
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,114)\)
- Multiplicity: 1252
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,107)\)
- Multiplicity: 2420
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,100)\)
- Multiplicity: 421
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,114)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,109,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,107)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,112)\)
- Multiplicity: 365
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,95,114)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,102,119)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,105)\)
- Multiplicity: 1400
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,112)\)
- Multiplicity: 2420
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,95,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,115,117)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,105)\)
- Multiplicity: 995
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,98)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,112)\)
- Multiplicity: 615
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,108,117)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,110)\)
- Multiplicity: 1055
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,101,117)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,103)\)
- Multiplicity: 1230
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,96)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,110)\)
- Multiplicity: 2837
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,94,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,96)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,103)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,110)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,114,115)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,108)\)
- Multiplicity: 1923
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,101)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,107,115)\)
- Multiplicity: 995
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,108)\)
- Multiplicity: 1923
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,94)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,101)\)
- Multiplicity: 615
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,100,115)\)
- Multiplicity: 365
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,106)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,113)\)
- Multiplicity: 653
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,106)\)
- Multiplicity: 2279
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,99)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,113)\)
- Multiplicity: 1923
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,113,118)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,106)\)
- Multiplicity: 622
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,99)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,119,111)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,113)\)
- Multiplicity: 243
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,106,118)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,104)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,111)\)
- Multiplicity: 1674
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,99,118)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,104)\)
- Multiplicity: 1674
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,97)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,111)\)
- Multiplicity: 2105
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,104)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,109)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,111)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,112,116)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,102)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,109)\)
- Multiplicity: 2721
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,105,116)\)
- Multiplicity: 622
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,95)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,102)\)
- Multiplicity: 658
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,109)\)
- Multiplicity: 1252
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,118,114)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,98,116)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,107)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,114)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,107)\)
- Multiplicity: 2837
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,100)\)
- Multiplicity: 271
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,114)\)
- Multiplicity: 1252
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,111,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,107)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,100)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,112)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,114)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,104,119)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,105)\)
- Multiplicity: 622
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,112)\)
- Multiplicity: 2018
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,97,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,117,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,105)\)
- Multiplicity: 1760
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,98)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,112)\)
- Multiplicity: 1297
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,110,117)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,110)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,96,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,103,117)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,103)\)
- Multiplicity: 800
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,110)\)
- Multiplicity: 3029
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,96,117)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,96)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,103)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,110)\)
- Multiplicity: 658
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,116,115)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,108)\)
- Multiplicity: 919
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,109,115)\)
- Multiplicity: 800
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,108)\)
- Multiplicity: 2811
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,101)\)
- Multiplicity: 615
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,102,115)\)
- Multiplicity: 658
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,108)\)
- Multiplicity: 89
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,101)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,113)\)
- Multiplicity: 243
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,95,115)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,106)\)
- Multiplicity: 1481
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,113)\)
- Multiplicity: 1923
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,115,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,106)\)
- Multiplicity: 1481
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,99)\)
- Multiplicity: 243
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,113)\)
- Multiplicity: 653
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,108,118)\)
- Multiplicity: 89
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,111)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,101,118)\)
- Multiplicity: 89
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,104)\)
- Multiplicity: 1523
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,97)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,111)\)
- Multiplicity: 2721
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,94,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,104)\)
- Multiplicity: 311
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,97)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,111)\)
- Multiplicity: 271
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,114,116)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,102)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,109)\)
- Multiplicity: 1760
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,107,116)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,95)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,102)\)
- Multiplicity: 931
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,109)\)
- Multiplicity: 2279
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,100,116)\)
- Multiplicity: 271
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,107)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,109)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,114)\)
- Multiplicity: 421
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,93,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,107)\)
- Multiplicity: 2420
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,100)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,114)\)
- Multiplicity: 1481
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,113,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,107)\)
- Multiplicity: 995
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,93)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,100)\)
- Multiplicity: 271
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,119,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,114)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,106,119)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,105)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,112)\)
- Multiplicity: 1297
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,99,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,105)\)
- Multiplicity: 2105
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,98)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,112)\)
- Multiplicity: 2018
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,112,117)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,105)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,98)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,110)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,112)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,105,117)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,103)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,110)\)
- Multiplicity: 2479
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,98,117)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,103)\)
- Multiplicity: 1055
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,96)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,110)\)
- Multiplicity: 1523
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,118,115)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,108)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,111,115)\)
- Multiplicity: 506
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,108)\)
- Multiplicity: 3029
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,101)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,104,115)\)
- Multiplicity: 919
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,108)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,94)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,101)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,113)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,97,115)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,106)\)
- Multiplicity: 622
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,113)\)
- Multiplicity: 1523
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,106)\)
- Multiplicity: 2279
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,99)\)
- Multiplicity: 243
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,113)\)
- Multiplicity: 1230
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,110,118)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,106)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,111)\)
- Multiplicity: 271
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,96,113)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,103,118)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,104)\)
- Multiplicity: 919
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,111)\)
- Multiplicity: 2721
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,96,118)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,104)\)
- Multiplicity: 919
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,97)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,111)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,116,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,109)\)
- Multiplicity: 800
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,109,116)\)
- Multiplicity: 451
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,102)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,109)\)
- Multiplicity: 3029
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,102,116)\)
- Multiplicity: 451
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,95)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,102)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,109)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,114)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,95,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,107)\)
- Multiplicity: 1481
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,114)\)
- Multiplicity: 1400
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,107)\)
- Multiplicity: 1977
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,100)\)
- Multiplicity: 421
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,114)\)
- Multiplicity: 615
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,108,119)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,112)\)
- Multiplicity: 615
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,101,119)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,105)\)
- Multiplicity: 1760
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,98)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,112)\)
- Multiplicity: 2420
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,114,117)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,105)\)
- Multiplicity: 622
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,98)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,112)\)
- Multiplicity: 365
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,107,117)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,103)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,110)\)
- Multiplicity: 1523
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,100,117)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,103)\)
- Multiplicity: 1297
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,96)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,110)\)
- Multiplicity: 2479
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,93,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,103)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,108)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,110)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,113,115)\)
- Multiplicity: 243
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,108)\)
- Multiplicity: 2420
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,101)\)
- Multiplicity: 89
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,106,115)\)
- Multiplicity: 1024
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,108)\)
- Multiplicity: 1400
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,94)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,101)\)
- Multiplicity: 506
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,119,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,99,115)\)
- Multiplicity: 243
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,106)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,113)\)
- Multiplicity: 931
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,106)\)
- Multiplicity: 2479
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,99)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,113)\)
- Multiplicity: 1760
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,112,118)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,106)\)
- Multiplicity: 311
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,99)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,111)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,113)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,105,118)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,104)\)
- Multiplicity: 311
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,111)\)
- Multiplicity: 2105
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,98,118)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,118,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,104)\)
- Multiplicity: 1523
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,97)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,111)\)
- Multiplicity: 1674
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,109)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,97,111)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,111,116)\)
- Multiplicity: 271
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,102)\)
- Multiplicity: 451
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,109)\)
- Multiplicity: 3029
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,104,116)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,95)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,102)\)
- Multiplicity: 451
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,109)\)
- Multiplicity: 800
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,117,114)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,97,116)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,107)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,114)\)
- Multiplicity: 1055
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,107)\)
- Multiplicity: 2721
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,100)\)
- Multiplicity: 365
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,114)\)
- Multiplicity: 1055
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,110,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,107)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,100)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,112)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,96,114)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,103,119)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,105)\)
- Multiplicity: 995
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,112)\)
- Multiplicity: 2279
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,96,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,116,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,105)\)
- Multiplicity: 1400
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,98)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,112)\)
- Multiplicity: 931
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,109,117)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,110)\)
- Multiplicity: 658
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,102,117)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,103)\)
- Multiplicity: 1055
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,110)\)
- Multiplicity: 3029
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,95,117)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,96)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,103)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,110)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,115,115)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,108)\)
- Multiplicity: 1400
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,108,115)\)
- Multiplicity: 919
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,108)\)
- Multiplicity: 2420
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,101)\)
- Multiplicity: 653
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,101,115)\)
- Multiplicity: 506
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,108)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,113)\)
- Multiplicity: 421
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,94,115)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,106)\)
- Multiplicity: 1923
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,99)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,113)\)
- Multiplicity: 1977
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,114,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,106)\)
- Multiplicity: 1024
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,99)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,113)\)
- Multiplicity: 421
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,107,118)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,104)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,111)\)
- Multiplicity: 1230
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,100,118)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,104)\)
- Multiplicity: 1674
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,97)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,111)\)
- Multiplicity: 2479
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,93,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,104)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,97)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,109)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,111)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,113,116)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,102)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,109)\)
- Multiplicity: 2279
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,106,116)\)
- Multiplicity: 622
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,95)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,102)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,109)\)
- Multiplicity: 1760
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,99,116)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,107)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,114)\)
- Multiplicity: 615
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,107)\)
- Multiplicity: 2721
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,100)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,114)\)
- Multiplicity: 1400
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,112,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,107)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,93)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,100)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,112)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,114)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,105,119)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,105)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,112)\)
- Multiplicity: 1674
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,98,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,105)\)
- Multiplicity: 2018
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,98)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,112)\)
- Multiplicity: 1674
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,111,117)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,105)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,110)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,112)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,104,117)\)
- Multiplicity: 311
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,103)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,110)\)
- Multiplicity: 2837
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,97,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,96)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,103)\)
- Multiplicity: 800
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,110)\)
- Multiplicity: 1055
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,117,115)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,108)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,110,115)\)
- Multiplicity: 658
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,108)\)
- Multiplicity: 3029
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,101)\)
- Multiplicity: 506
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,103,115)\)
- Multiplicity: 800
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,108)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,101)\)
- Multiplicity: 89
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,113)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,96,115)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,106)\)
- Multiplicity: 1024
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,113)\)
- Multiplicity: 1760
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,116,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,106)\)
- Multiplicity: 1923
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,99)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,113)\)
- Multiplicity: 931
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,109,118)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,111)\)
- Multiplicity: 506
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,95,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,102,118)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,104)\)
- Multiplicity: 1252
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,111)\)
- Multiplicity: 2811
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,95,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,104)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,97)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,111)\)
- Multiplicity: 506
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,115,116)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,109)\)
- Multiplicity: 1252
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,108,116)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,95)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,102)\)
- Multiplicity: 931
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,109)\)
- Multiplicity: 2721
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,101,116)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,102)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,109)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,114)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,94,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,107)\)
- Multiplicity: 1977
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,100)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,114)\)
- Multiplicity: 1481
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,107)\)
- Multiplicity: 1481
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,93)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,100)\)
- Multiplicity: 365
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,114)\)
- Multiplicity: 421
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,107,119)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,105)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,112)\)
- Multiplicity: 931
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,100,119)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,105)\)
- Multiplicity: 2018
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,98)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,106,112)\)
- Multiplicity: 2279
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{39,\lambda}(2,7;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{39,1}(2,7;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{39,\textbf{a}}(2,7;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!