Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
(0,0,0) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
(12,2,0) |
(18,2,1) |
(23,4,1) |
(28,5,2) |
(33,5,4) |
(37,8,4) |
(41,10,5) |
(45,11,7) |
(49,11,10) |
(52,15,10) |
(55,18,11) |
(58,20,13) |
(61,21,16) |
(64,21,20) |
(66,26,20) |
(68,30,21) |
(70,33,23) |
(72,35,26) |
(74,36,30) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(82,73,55) |
(83,73,61) |
(83,77,64) |
(83,80,68) |
(83,82,73) |
(83,83,79) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
3 |
34 |
67 |
99 |
130 |
162 |
197 |
227 |
256 |
284 |
310 |
333 |
348 |
363 |
371 |
377 |
378 |
372 |
362 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
109 |
82 |
55 |
27 |
4 |
1 |
\(\lambda=(82,75,74)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(81,77,73)\)
- Multiplicity: 1
- Dimension: 125
- Dominant: No
\(\lambda=(80,79,72)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(82,82,67)\)
- Multiplicity: 1
- Dimension: 136
- Dominant: Yes
\(\lambda=(83,80,68)\)
- Multiplicity: 1
- Dimension: 442
- Dominant: Yes
\(\lambda=(81,76,74)\)
- Multiplicity: 2
- Dimension: 81
- Dominant: No
\(\lambda=(80,78,73)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(82,81,68)\)
- Multiplicity: 1
- Dimension: 224
- Dominant: No
\(\lambda=(83,79,69)\)
- Multiplicity: 1
- Dimension: 440
- Dominant: No
\(\lambda=(80,77,74)\)
- Multiplicity: 1
- Dimension: 64
- Dominant: No
\(\lambda=(79,78,74)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(80,76,75)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(82,80,69)\)
- Multiplicity: 2
- Dimension: 270
- Dominant: No
\(\lambda=(83,78,70)\)
- Multiplicity: 2
- Dimension: 405
- Dominant: No
\(\lambda=(82,79,70)\)
- Multiplicity: 2
- Dimension: 280
- Dominant: No
\(\lambda=(83,77,71)\)
- Multiplicity: 1
- Dimension: 343
- Dominant: No
\(\lambda=(79,76,76)\)
- Multiplicity: 1
- Dimension: 10
- Dominant: No
\(\lambda=(82,78,71)\)
- Multiplicity: 2
- Dimension: 260
- Dominant: No
\(\lambda=(83,76,72)\)
- Multiplicity: 2
- Dimension: 260
- Dominant: No
\(\lambda=(81,80,70)\)
- Multiplicity: 1
- Dimension: 143
- Dominant: No
\(\lambda=(83,75,73)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(82,77,72)\)
- Multiplicity: 2
- Dimension: 216
- Dominant: No
\(\lambda=(81,79,71)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(83,74,74)\)
- Multiplicity: 1
- Dimension: 55
- Dominant: No
\(\lambda=(82,76,73)\)
- Multiplicity: 2
- Dimension: 154
- Dominant: No
\(\lambda=(81,78,72)\)
- Multiplicity: 2
- Dimension: 154
- Dominant: No
\(\lambda=(80,80,71)\)
- Multiplicity: 1
- Dimension: 55
- Dominant: No
\(\textbf{a}=(81,69,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,79,80)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,75,74)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,83,70)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,77,77)\)
- Multiplicity: 130
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,74,83)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,72,80)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,82,79)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,78,73)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,80,76)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,77,82)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,75,79)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,81,72)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,79,69)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,83,75)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,73,76)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,70,82)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,80,81)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,82,68)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,76,75)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,78,78)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,73,81)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,83,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,79,74)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,77,71)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,81,77)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,71,78)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,78,83)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,76,80)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,82,73)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,80,70)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,74,77)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,71,83)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,81,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,69,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,79,79)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,75,73)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,83,69)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,77,76)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,74,82)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,72,79)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,82,78)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,78,72)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,80,75)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,67,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,77,81)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,81,71)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,83,74)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,73,75)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,75,78)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,70,81)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,80,80)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,76,74)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,82,67)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,78,77)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,75,83)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,73,80)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,83,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,79,73)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,81,76)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,71,77)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,68,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,78,82)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,76,79)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,82,72)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,80,69)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,74,76)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,71,82)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,81,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,69,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,83,68)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,77,75)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,79,78)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,74,81)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,80,74)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,78,71)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,82,77)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,72,78)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,79,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,77,80)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,83,73)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,81,70)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,75,77)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,72,83)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(67,82,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,70,80)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,80,79)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,76,73)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,78,76)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,75,82)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,73,79)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,83,78)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,79,72)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,81,75)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,68,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,78,81)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,80,68)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,82,71)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,74,75)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,76,78)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,71,81)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,81,80)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,77,74)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,79,77)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,76,83)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,74,80)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,80,73)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,78,70)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,82,76)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,72,77)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,69,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,79,82)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,77,79)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,83,72)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,81,69)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,75,76)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,72,82)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,82,81)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,70,79)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,80,78)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,76,72)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,78,75)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,75,81)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,81,74)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,79,71)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,83,77)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,73,78)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,80,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,68,81)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,78,80)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,74,74)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,82,70)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,76,77)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,73,83)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,71,80)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,81,79)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,77,73)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,79,76)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,76,82)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,74,79)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,80,72)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,82,75)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,72,76)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,69,82)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,79,81)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,81,68)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,83,71)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,75,75)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,77,78)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,72,81)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,82,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,78,74)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,80,77)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,70,78)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,77,83)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,75,80)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,81,73)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,79,70)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,83,76)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,73,77)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,70,83)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,80,82)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,68,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,78,79)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,82,69)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,76,76)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,73,82)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,71,79)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,81,78)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,77,72)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,79,75)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,76,81)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,80,71)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,82,74)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,74,78)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{31,\lambda}(2,0;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{31,2}(2,0;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
78 |
79 |
80 |
81 |
82 |
83 |
84 |
73 |
· |
· |
· |
· |
· |
· |
· |
74 |
· |
· |
· |
· |
· |
1
| · |
75 |
· |
· |
· |
· |
1
| 1
| · |
76 |
· |
1
| 1
| 2
| 2
| 2
| · |
77 |
· |
· |
1
| 1
| 2
| 1
| · |
78 |
· |
1
| 1
| 2
| 2
| 2
| · |
79 |
· |
· |
1
| 1
| 2
| 1
| · |
80 |
· |
· |
1
| 1
| 2
| 1
| · |
81 |
· |
· |
· |
· |
1
| · |
· |
82 |
· |
· |
· |
· |
1
| · |
· |
83 |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{31,\textbf{a}}(2,0;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!