Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(1,0,0) |
(8,1,0) |
(15,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(20,5,0) |
(27,5,1) |
(33,6,2) |
(39,6,4) |
(44,9,4) |
(49,11,5) |
(54,12,7) |
(59,12,10) |
(63,16,10) |
(67,19,11) |
(71,21,13) |
(75,22,16) |
(79,22,20) |
(82,27,20) |
(85,31,21) |
(88,34,23) |
(91,36,26) |
(94,37,30) |
(97,37,35) |
(99,43,35) |
(101,48,36) |
(103,52,38) |
(105,55,41) |
(107,57,45) |
(109,58,50) |
(111,58,56) |
(112,65,56) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(118,109,86) |
(119,109,93) |
(119,113,97) |
(119,116,102) |
(119,118,108) |
(119,119,115) |
\(\lambda=(117,105,99)\)
- Multiplicity: 21
- Dimension: 910
- Dominant: No
\(\lambda=(118,111,92)\)
- Multiplicity: 3
- Dimension: 2240
- Dominant: No
\(\lambda=(113,113,95)\)
- Multiplicity: 7
- Dimension: 190
- Dominant: No
\(\lambda=(112,107,102)\)
- Multiplicity: 47
- Dimension: 216
- Dominant: No
\(\lambda=(116,114,91)\)
- Multiplicity: 3
- Dimension: 972
- Dominant: No
\(\lambda=(115,108,98)\)
- Multiplicity: 43
- Dimension: 836
- Dominant: No
\(\lambda=(110,110,101)\)
- Multiplicity: 13
- Dimension: 55
- Dominant: No
\(\lambda=(117,103,101)\)
- Multiplicity: 13
- Dimension: 405
- Dominant: No
\(\lambda=(118,109,94)\)
- Multiplicity: 6
- Dimension: 2080
- Dominant: No
\(\lambda=(113,111,97)\)
- Multiplicity: 26
- Dimension: 405
- Dominant: No
\(\lambda=(112,105,104)\)
- Multiplicity: 19
- Dimension: 80
- Dominant: No
\(\lambda=(110,108,103)\)
- Multiplicity: 28
- Dimension: 81
- Dominant: No
\(\lambda=(116,112,93)\)
- Multiplicity: 11
- Dimension: 1250
- Dominant: No
\(\lambda=(115,106,100)\)
- Multiplicity: 42
- Dimension: 595
- Dominant: No
\(\lambda=(118,107,96)\)
- Multiplicity: 9
- Dimension: 1728
- Dominant: No
\(\lambda=(113,109,99)\)
- Multiplicity: 49
- Dimension: 440
- Dominant: No
\(\lambda=(110,106,105)\)
- Multiplicity: 13
- Dimension: 35
- Dominant: No
\(\lambda=(116,110,95)\)
- Multiplicity: 22
- Dimension: 1288
- Dominant: No
\(\lambda=(115,104,102)\)
- Multiplicity: 22
- Dimension: 270
- Dominant: No
\(\lambda=(118,105,98)\)
- Multiplicity: 9
- Dimension: 1232
- Dominant: No
\(\lambda=(114,113,94)\)
- Multiplicity: 9
- Dimension: 440
- Dominant: No
\(\lambda=(113,107,101)\)
- Multiplicity: 54
- Dimension: 343
- Dominant: No
\(\lambda=(116,108,97)\)
- Multiplicity: 33
- Dimension: 1134
- Dominant: No
\(\lambda=(117,114,90)\)
- Multiplicity: 1
- Dimension: 1450
- Dominant: No
\(\lambda=(111,110,100)\)
- Multiplicity: 26
- Dimension: 143
- Dominant: No
\(\lambda=(108,107,106)\)
- Multiplicity: 4
- Dimension: 8
- Dominant: No
\(\lambda=(119,109,93)\)
- Multiplicity: 1
- Dimension: 2618
- Dominant: Yes
\(\lambda=(118,103,100)\)
- Multiplicity: 6
- Dimension: 640
- Dominant: No
\(\lambda=(114,111,96)\)
- Multiplicity: 25
- Dimension: 640
- Dominant: No
\(\lambda=(113,105,103)\)
- Multiplicity: 31
- Dimension: 162
- Dominant: No
\(\lambda=(116,106,99)\)
- Multiplicity: 34
- Dimension: 836
- Dominant: No
\(\lambda=(117,112,92)\)
- Multiplicity: 5
- Dimension: 1701
- Dominant: No
\(\lambda=(111,108,102)\)
- Multiplicity: 40
- Dimension: 154
- Dominant: No
\(\lambda=(115,115,91)\)
- Multiplicity: 2
- Dimension: 325
- Dominant: No
\(\lambda=(119,107,95)\)
- Multiplicity: 1
- Dimension: 2197
- Dominant: No
\(\lambda=(114,109,98)\)
- Multiplicity: 46
- Dimension: 648
- Dominant: No
\(\lambda=(116,104,101)\)
- Multiplicity: 22
- Dimension: 442
- Dominant: No
\(\lambda=(117,110,94)\)
- Multiplicity: 11
- Dimension: 1700
- Dominant: No
\(\lambda=(112,112,97)\)
- Multiplicity: 8
- Dimension: 136
- Dominant: No
\(\lambda=(111,106,104)\)
- Multiplicity: 24
- Dimension: 81
- Dominant: No
\(\lambda=(109,109,103)\)
- Multiplicity: 11
- Dimension: 28
- Dominant: No
\(\lambda=(115,113,93)\)
- Multiplicity: 10
- Dimension: 756
- Dominant: No
\(\lambda=(119,105,97)\)
- Multiplicity: 2
- Dimension: 1620
- Dominant: No
\(\lambda=(114,107,100)\)
- Multiplicity: 53
- Dimension: 512
- Dominant: No
\(\lambda=(117,108,96)\)
- Multiplicity: 18
- Dimension: 1495
- Dominant: No
\(\lambda=(112,110,99)\)
- Multiplicity: 33
- Dimension: 270
- Dominant: No
\(\lambda=(109,107,105)\)
- Multiplicity: 12
- Dimension: 27
- Dominant: No
\(\lambda=(119,103,99)\)
- Multiplicity: 2
- Dimension: 935
- Dominant: No
\(\lambda=(115,111,95)\)
- Multiplicity: 23
- Dimension: 935
- Dominant: No
\(\lambda=(114,105,102)\)
- Multiplicity: 35
- Dimension: 280
- Dominant: No
\(\lambda=(117,106,98)\)
- Multiplicity: 20
- Dimension: 1134
- Dominant: No
\(\lambda=(118,112,91)\)
- Multiplicity: 2
- Dimension: 2233
- Dominant: No
\(\lambda=(112,108,101)\)
- Multiplicity: 49
- Dimension: 260
- Dominant: No
\(\lambda=(116,115,90)\)
- Multiplicity: 2
- Dimension: 728
- Dominant: No
\(\lambda=(119,101,101)\)
- Multiplicity: 1
- Dimension: 190
- Dominant: No
\(\lambda=(115,109,97)\)
- Multiplicity: 41
- Dimension: 910
- Dominant: No
\(\lambda=(117,104,100)\)
- Multiplicity: 15
- Dimension: 665
- Dominant: No
\(\lambda=(118,110,93)\)
- Multiplicity: 4
- Dimension: 2187
- Dominant: No
\(\lambda=(113,112,96)\)
- Multiplicity: 14
- Dimension: 323
- Dominant: No
\(\lambda=(112,106,103)\)
- Multiplicity: 36
- Dimension: 154
- Dominant: No
\(\lambda=(116,113,92)\)
- Multiplicity: 7
- Dimension: 1144
- Dominant: No
\(\lambda=(115,107,99)\)
- Multiplicity: 48
- Dimension: 729
- Dominant: No
\(\lambda=(110,109,102)\)
- Multiplicity: 25
- Dimension: 80
- Dominant: No
\(\lambda=(117,102,102)\)
- Multiplicity: 2
- Dimension: 136
- Dominant: No
\(\lambda=(118,108,95)\)
- Multiplicity: 8
- Dimension: 1925
- Dominant: No
\(\lambda=(113,110,98)\)
- Multiplicity: 36
- Dimension: 442
- Dominant: No
\(\lambda=(110,107,104)\)
- Multiplicity: 23
- Dimension: 64
- Dominant: No
\(\lambda=(116,111,94)\)
- Multiplicity: 16
- Dimension: 1296
- Dominant: No
\(\lambda=(115,105,101)\)
- Multiplicity: 38
- Dimension: 440
- Dominant: No
\(\lambda=(118,106,97)\)
- Multiplicity: 9
- Dimension: 1495
- Dominant: No
\(\lambda=(114,114,93)\)
- Multiplicity: 2
- Dimension: 253
- Dominant: No
\(\lambda=(113,108,100)\)
- Multiplicity: 52
- Dimension: 405
- Dominant: No
\(\lambda=(116,109,96)\)
- Multiplicity: 29
- Dimension: 1232
- Dominant: No
\(\lambda=(117,115,89)\)
- Multiplicity: 1
- Dimension: 1215
- Dominant: Yes
\(\lambda=(115,103,103)\)
- Multiplicity: 11
- Dimension: 91
- Dominant: No
\(\lambda=(111,111,99)\)
- Multiplicity: 12
- Dimension: 91
- Dominant: No
\(\lambda=(108,108,105)\)
- Multiplicity: 4
- Dimension: 10
- Dominant: No
\(\lambda=(118,104,99)\)
- Multiplicity: 8
- Dimension: 945
- Dominant: No
\(\lambda=(114,112,95)\)
- Multiplicity: 16
- Dimension: 567
- Dominant: No
\(\lambda=(113,106,102)\)
- Multiplicity: 43
- Dimension: 260
- Dominant: No
\(\lambda=(116,107,98)\)
- Multiplicity: 35
- Dimension: 1000
- Dominant: No
\(\lambda=(117,113,91)\)
- Multiplicity: 4
- Dimension: 1610
- Dominant: No
\(\lambda=(111,109,101)\)
- Multiplicity: 38
- Dimension: 162
- Dominant: No
\(\lambda=(118,102,101)\)
- Multiplicity: 3
- Dimension: 323
- Dominant: No
\(\lambda=(114,110,97)\)
- Multiplicity: 36
- Dimension: 665
- Dominant: No
\(\lambda=(113,104,104)\)
- Multiplicity: 8
- Dimension: 55
- Dominant: No
\(\lambda=(116,105,100)\)
- Multiplicity: 30
- Dimension: 648
- Dominant: No
\(\lambda=(117,111,93)\)
- Multiplicity: 9
- Dimension: 1729
- Dominant: No
\(\lambda=(111,107,103)\)
- Multiplicity: 38
- Dimension: 125
- Dominant: No
\(\lambda=(115,114,92)\)
- Multiplicity: 4
- Dimension: 575
- Dominant: No
\(\lambda=(119,106,96)\)
- Multiplicity: 1
- Dimension: 1925
- Dominant: No
\(\lambda=(114,108,99)\)
- Multiplicity: 51
- Dimension: 595
- Dominant: No
\(\lambda=(116,103,102)\)
- Multiplicity: 13
- Dimension: 224
- Dominant: No
\(\lambda=(117,109,95)\)
- Multiplicity: 17
- Dimension: 1620
- Dominant: No
\(\lambda=(112,111,98)\)
- Multiplicity: 20
- Dimension: 224
- Dominant: No
\(\lambda=(111,105,105)\)
- Multiplicity: 9
- Dimension: 28
- Dominant: No
\(\lambda=(109,108,104)\)
- Multiplicity: 14
- Dimension: 35
- Dominant: No
\(\lambda=(115,112,94)\)
- Multiplicity: 14
- Dimension: 874
- Dominant: No
\(\lambda=(114,106,101)\)
- Multiplicity: 46
- Dimension: 405
- Dominant: No
\(\lambda=(117,107,97)\)
- Multiplicity: 23
- Dimension: 1331
- Dominant: No
\(\lambda=(118,113,90)\)
- Multiplicity: 1
- Dimension: 2160
- Dominant: Yes
\(\lambda=(112,109,100)\)
- Multiplicity: 45
- Dimension: 280
- Dominant: No
\(\lambda=(109,106,106)\)
- Multiplicity: 4
- Dimension: 10
- Dominant: No
\(\lambda=(115,110,96)\)
- Multiplicity: 30
- Dimension: 945
- Dominant: No
\(\lambda=(114,104,103)\)
- Multiplicity: 20
- Dimension: 143
- Dominant: No
\(\textbf{a}=(96,107,118)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,93,113)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,113,111)\)
- Multiplicity: 1137
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,99)\)
- Multiplicity: 257
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,92)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,119,104)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,106)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,100,118)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,106,111)\)
- Multiplicity: 7137
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,97)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,104)\)
- Multiplicity: 5676
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,93,118)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,113,116)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,90)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,97)\)
- Multiplicity: 1137
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,104)\)
- Multiplicity: 5676
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,119,109)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,99,111)\)
- Multiplicity: 2689
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,106,116)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,102)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,98,104)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,112,109)\)
- Multiplicity: 3362
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,92,111)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,99,116)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,102)\)
- Multiplicity: 5765
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,95)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,105,109)\)
- Multiplicity: 9747
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,92,116)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,112,114)\)
- Multiplicity: 401
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,102)\)
- Multiplicity: 1575
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,95)\)
- Multiplicity: 194
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,118,107)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,98,109)\)
- Multiplicity: 1286
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,105,114)\)
- Multiplicity: 2592
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,100)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,107)\)
- Multiplicity: 6602
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,98,114)\)
- Multiplicity: 1286
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,118,112)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,100)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,93)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,107)\)
- Multiplicity: 8298
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,105,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,91,114)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,111,112)\)
- Multiplicity: 1819
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,100)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,93)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,105)\)
- Multiplicity: 257
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,107)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,98,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,104,112)\)
- Multiplicity: 5676
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,98)\)
- Multiplicity: 497
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,105)\)
- Multiplicity: 8760
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,111,117)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,97,112)\)
- Multiplicity: 1207
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,91)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,98)\)
- Multiplicity: 1286
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,105)\)
- Multiplicity: 4043
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,117,110)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,104,117)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,103)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,110,110)\)
- Multiplicity: 4976
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,97,117)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,117,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,103)\)
- Multiplicity: 7740
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,96)\)
- Multiplicity: 469
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,103,110)\)
- Multiplicity: 7432
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,90,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,110,115)\)
- Multiplicity: 469
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,103)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,96)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,108)\)
- Multiplicity: 388
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,96,110)\)
- Multiplicity: 469
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,103,115)\)
- Multiplicity: 1620
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,101)\)
- Multiplicity: 1469
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,108)\)
- Multiplicity: 8942
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,96,115)\)
- Multiplicity: 469
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,116,113)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,101)\)
- Multiplicity: 4161
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,94)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,108)\)
- Multiplicity: 5765
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,89,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,109,113)\)
- Multiplicity: 2191
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,101)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,106)\)
- Multiplicity: 1299
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,95,108)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,102,113)\)
- Multiplicity: 3745
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,99)\)
- Multiplicity: 1661
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,106)\)
- Multiplicity: 10706
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,109,118)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,95,113)\)
- Multiplicity: 439
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,115,111)\)
- Multiplicity: 312
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,99)\)
- Multiplicity: 1100
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,92)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,106)\)
- Multiplicity: 2351
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,102,118)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,108,111)\)
- Multiplicity: 5765
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,104)\)
- Multiplicity: 2724
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,95,118)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,115,116)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,97)\)
- Multiplicity: 1137
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,104)\)
- Multiplicity: 8298
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,101,111)\)
- Multiplicity: 4765
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,108,116)\)
- Multiplicity: 388
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,97)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,104)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,114,109)\)
- Multiplicity: 1286
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,94,111)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,101,116)\)
- Multiplicity: 766
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,102)\)
- Multiplicity: 3745
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,95)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,107,109)\)
- Multiplicity: 9747
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,94,116)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,114,114)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,102)\)
- Multiplicity: 3745
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,95)\)
- Multiplicity: 401
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,100,109)\)
- Multiplicity: 3362
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,107,114)\)
- Multiplicity: 2029
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,100)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,107)\)
- Multiplicity: 3309
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,93,109)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,100,114)\)
- Multiplicity: 2029
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,100)\)
- Multiplicity: 3362
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,93)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,107)\)
- Multiplicity: 10706
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,107,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,93,114)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,113,112)\)
- Multiplicity: 734
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,100)\)
- Multiplicity: 696
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,93)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,119,105)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,107)\)
- Multiplicity: 1100
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,100,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,106,112)\)
- Multiplicity: 5396
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,98)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,105)\)
- Multiplicity: 5676
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,93,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,113,117)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,99,112)\)
- Multiplicity: 2555
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,98)\)
- Multiplicity: 1819
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,91)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,105)\)
- Multiplicity: 7331
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,106,117)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,92,112)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,98)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,103)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,105)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,112,110)\)
- Multiplicity: 2555
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,99,117)\)
- Multiplicity: 257
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,103)\)
- Multiplicity: 6602
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,96)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,105,110)\)
- Multiplicity: 8760
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,92,117)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,112,115)\)
- Multiplicity: 191
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,103)\)
- Multiplicity: 2724
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,89)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,96)\)
- Multiplicity: 469
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,118,108)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,98,110)\)
- Multiplicity: 1627
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,105,115)\)
- Multiplicity: 1469
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,101)\)
- Multiplicity: 313
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,108)\)
- Multiplicity: 5765
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,98,115)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,118,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,101)\)
- Multiplicity: 4976
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,94)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,108)\)
- Multiplicity: 8942
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,91,115)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,111,113)\)
- Multiplicity: 1137
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,101)\)
- Multiplicity: 313
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,94)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,106)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,108)\)
- Multiplicity: 388
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,104,113)\)
- Multiplicity: 4138
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,99)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,106)\)
- Multiplicity: 8760
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,111,118)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,97,113)\)
- Multiplicity: 1137
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,117,111)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,99)\)
- Multiplicity: 2191
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,92)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,106)\)
- Multiplicity: 5396
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,104,118)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,90,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,110,111)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,104)\)
- Multiplicity: 766
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,96,106)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,97,118)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,103,111)\)
- Multiplicity: 6602
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,97)\)
- Multiplicity: 667
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,104)\)
- Multiplicity: 8942
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,90,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,110,116)\)
- Multiplicity: 194
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,90)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,97)\)
- Multiplicity: 388
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,104)\)
- Multiplicity: 1575
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,116,109)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,96,111)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,103,116)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,102)\)
- Multiplicity: 1575
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,109,109)\)
- Multiplicity: 7740
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,96,116)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,116,114)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,102)\)
- Multiplicity: 5765
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,95)\)
- Multiplicity: 401
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,102,109)\)
- Multiplicity: 6273
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,89,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,109,114)\)
- Multiplicity: 1286
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,102)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,95)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,107)\)
- Multiplicity: 1100
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,95,109)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,102,114)\)
- Multiplicity: 2592
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,100)\)
- Multiplicity: 2029
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,107)\)
- Multiplicity: 10706
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,109,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,95,114)\)
- Multiplicity: 401
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,115,112)\)
- Multiplicity: 191
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,100)\)
- Multiplicity: 2029
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,93)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,107)\)
- Multiplicity: 3309
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,102,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,108,112)\)
- Multiplicity: 4161
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,105)\)
- Multiplicity: 2592
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,95,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,115,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,101,112)\)
- Multiplicity: 4161
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,98)\)
- Multiplicity: 1627
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,105)\)
- Multiplicity: 9747
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,108,117)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,94,112)\)
- Multiplicity: 191
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,91)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,98)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,105)\)
- Multiplicity: 696
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,114,110)\)
- Multiplicity: 935
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,101,117)\)
- Multiplicity: 313
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,96)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,103)\)
- Multiplicity: 4043
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,107,110)\)
- Multiplicity: 8298
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,94,117)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,114,115)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,103)\)
- Multiplicity: 5396
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,96)\)
- Multiplicity: 734
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,100,110)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,107,115)\)
- Multiplicity: 1100
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,103)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,101)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,108)\)
- Multiplicity: 2764
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,93,110)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,100,115)\)
- Multiplicity: 1299
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,101)\)
- Multiplicity: 4161
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,94)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,108)\)
- Multiplicity: 10706
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,93,115)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,113,113)\)
- Multiplicity: 439
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,101)\)
- Multiplicity: 1469
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,94)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,119,106)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,108)\)
- Multiplicity: 1661
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,106,113)\)
- Multiplicity: 3745
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,99)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,106)\)
- Multiplicity: 5396
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,113,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,99,113)\)
- Multiplicity: 2191
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,99)\)
- Multiplicity: 2689
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,92)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,106)\)
- Multiplicity: 8760
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,106,118)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,92,113)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,112,111)\)
- Multiplicity: 1819
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,99)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,104)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,106)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,99,118)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,105,111)\)
- Multiplicity: 7331
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,97)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,104)\)
- Multiplicity: 7137
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,92,118)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,112,116)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,90)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,97)\)
- Multiplicity: 935
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,104)\)
- Multiplicity: 4138
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,118,109)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,98,111)\)
- Multiplicity: 1819
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,105,116)\)
- Multiplicity: 696
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,102)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,111,109)\)
- Multiplicity: 4765
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,98,116)\)
- Multiplicity: 497
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,102)\)
- Multiplicity: 6273
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,95)\)
- Multiplicity: 194
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,104,109)\)
- Multiplicity: 8942
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,91,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,111,114)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,102)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,95)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,107)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,97,109)\)
- Multiplicity: 667
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,104,114)\)
- Multiplicity: 2724
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,100)\)
- Multiplicity: 696
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,107)\)
- Multiplicity: 8298
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,97,114)\)
- Multiplicity: 935
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,117,112)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,100)\)
- Multiplicity: 3362
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,93)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,107)\)
- Multiplicity: 6602
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,104,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,90,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,110,112)\)
- Multiplicity: 2555
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,100)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,105)\)
- Multiplicity: 696
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,96,107)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,97,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,103,112)\)
- Multiplicity: 5396
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,98)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,105)\)
- Multiplicity: 9747
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,110,117)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,96,112)\)
- Multiplicity: 734
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,91)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,98)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,105)\)
- Multiplicity: 2592
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,116,110)\)
- Multiplicity: 194
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,103,117)\)
- Multiplicity: 313
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,103)\)
- Multiplicity: 1620
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,109,110)\)
- Multiplicity: 6273
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,96,117)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,116,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,103)\)
- Multiplicity: 7432
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,96)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,102,110)\)
- Multiplicity: 6273
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,89,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,109,115)\)
- Multiplicity: 667
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,103)\)
- Multiplicity: 313
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,96)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,108)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,95,110)\)
- Multiplicity: 194
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,102,115)\)
- Multiplicity: 1575
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,101)\)
- Multiplicity: 2351
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,108)\)
- Multiplicity: 10087
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,95,115)\)
- Multiplicity: 312
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,115,113)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,101)\)
- Multiplicity: 3309
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,94)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,108)\)
- Multiplicity: 4161
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,108,113)\)
- Multiplicity: 2764
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,106)\)
- Multiplicity: 2351
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,94,108)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,101,113)\)
- Multiplicity: 3309
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,99)\)
- Multiplicity: 2191
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,106)\)
- Multiplicity: 10706
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,108,118)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,94,113)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,114,111)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,99)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,92)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,106)\)
- Multiplicity: 1299
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,101,118)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,107,111)\)
- Multiplicity: 6602
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,97)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,104)\)
- Multiplicity: 4138
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,94,118)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,114,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,90)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,97)\)
- Multiplicity: 1207
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,104)\)
- Multiplicity: 7137
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,100,111)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,107,116)\)
- Multiplicity: 497
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,102)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,97)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,104)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,113,109)\)
- Multiplicity: 2191
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,93,111)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,100,116)\)
- Multiplicity: 696
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,102)\)
- Multiplicity: 4867
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,95)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,106,109)\)
- Multiplicity: 10019
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,93,116)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,113,114)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,102)\)
- Multiplicity: 2592
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,95)\)
- Multiplicity: 312
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,119,107)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,99,109)\)
- Multiplicity: 2191
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,106,114)\)
- Multiplicity: 2351
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,100)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,107)\)
- Multiplicity: 4867
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,99,114)\)
- Multiplicity: 1661
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,100)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,93)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,107)\)
- Multiplicity: 9747
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,106,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,92,114)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,112,112)\)
- Multiplicity: 1207
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,100)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,93)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,105)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,107)\)
- Multiplicity: 497
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,99,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,105,112)\)
- Multiplicity: 5676
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,98)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,105)\)
- Multiplicity: 7331
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,112,117)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,98,112)\)
- Multiplicity: 1819
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,91)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,98)\)
- Multiplicity: 1627
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,105)\)
- Multiplicity: 5676
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,118,110)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,105,117)\)
- Multiplicity: 257
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,91,112)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,103)\)
- Multiplicity: 313
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,97,105)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,111,110)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,98,117)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,103)\)
- Multiplicity: 7432
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,96)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,104,110)\)
- Multiplicity: 8298
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,91,117)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,111,115)\)
- Multiplicity: 312
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,103)\)
- Multiplicity: 1620
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,89)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,96)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,117,108)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,97,110)\)
- Multiplicity: 935
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,104,115)\)
- Multiplicity: 1575
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,101)\)
- Multiplicity: 766
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,108)\)
- Multiplicity: 7432
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,97,115)\)
- Multiplicity: 667
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,117,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,101)\)
- Multiplicity: 4765
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,94)\)
- Multiplicity: 191
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,108)\)
- Multiplicity: 7432
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,90,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,110,113)\)
- Multiplicity: 1627
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,101)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,94)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,106)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,96,108)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,103,113)\)
- Multiplicity: 4043
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,99)\)
- Multiplicity: 1100
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,106)\)
- Multiplicity: 10019
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,110,118)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,96,113)\)
- Multiplicity: 734
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,116,111)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,99)\)
- Multiplicity: 1661
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,92)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,106)\)
- Multiplicity: 3745
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,103,118)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,109,111)\)
- Multiplicity: 4765
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,104)\)
- Multiplicity: 1575
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,96,118)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,116,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,97)\)
- Multiplicity: 935
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,104)\)
- Multiplicity: 8942
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,102,111)\)
- Multiplicity: 5765
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,109,116)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,90)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,97)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,104)\)
- Multiplicity: 766
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,115,109)\)
- Multiplicity: 667
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,95,111)\)
- Multiplicity: 312
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,102,116)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,102)\)
- Multiplicity: 2592
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,108,109)\)
- Multiplicity: 8942
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,95,116)\)
- Multiplicity: 194
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,115,114)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,102)\)
- Multiplicity: 4867
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,95)\)
- Multiplicity: 439
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,101,109)\)
- Multiplicity: 4765
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,108,114)\)
- Multiplicity: 1661
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,102)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,107)\)
- Multiplicity: 2029
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,94,109)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,101,114)\)
- Multiplicity: 2351
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,100)\)
- Multiplicity: 2764
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,93)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,107)\)
- Multiplicity: 11053
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,108,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,94,114)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,114,112)\)
- Multiplicity: 401
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,100)\)
- Multiplicity: 1299
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,93)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,107)\)
- Multiplicity: 2029
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,101,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,107,112)\)
- Multiplicity: 4867
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,98)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,105)\)
- Multiplicity: 4043
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,94,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,114,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,100,112)\)
- Multiplicity: 3362
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,98)\)
- Multiplicity: 1819
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,91)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,105)\)
- Multiplicity: 8760
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,107,117)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,93,112)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,98)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,103)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,105)\)
- Multiplicity: 257
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,113,110)\)
- Multiplicity: 1627
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,100,117)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,96)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,103)\)
- Multiplicity: 5396
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,106,110)\)
- Multiplicity: 8760
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,93,117)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,113,115)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,103)\)
- Multiplicity: 4043
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,89)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,96)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,119,108)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,99,110)\)
- Multiplicity: 2555
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,106,115)\)
- Multiplicity: 1299
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,101)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,108)\)
- Multiplicity: 4161
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,99,115)\)
- Multiplicity: 1100
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,101)\)
- Multiplicity: 4765
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,94)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,108)\)
- Multiplicity: 10087
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,92,115)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,112,113)\)
- Multiplicity: 734
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,101)\)
- Multiplicity: 766
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,94)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,106)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,108)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,105,113)\)
- Multiplicity: 4043
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,99)\)
- Multiplicity: 257
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,106)\)
- Multiplicity: 7137
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,112,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,98,113)\)
- Multiplicity: 1627
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,118,111)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,99)\)
- Multiplicity: 2555
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,92)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,106)\)
- Multiplicity: 7137
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,105,118)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,91,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,111,111)\)
- Multiplicity: 2689
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,99)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,104)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,106)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,98,118)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,104,111)\)
- Multiplicity: 7137
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,97)\)
- Multiplicity: 388
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,104)\)
- Multiplicity: 8298
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,91,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,111,116)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,90)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,97)\)
- Multiplicity: 667
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,104)\)
- Multiplicity: 2724
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,117,109)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,97,111)\)
- Multiplicity: 1137
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,104,116)\)
- Multiplicity: 766
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,102)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,110,109)\)
- Multiplicity: 6273
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,97,116)\)
- Multiplicity: 388
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,117,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,102)\)
- Multiplicity: 6273
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,95)\)
- Multiplicity: 312
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,103,109)\)
- Multiplicity: 7740
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,90,116)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,110,114)\)
- Multiplicity: 935
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,102)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,95)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,107)\)
- Multiplicity: 497
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,96,109)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,103,114)\)
- Multiplicity: 2724
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,100)\)
- Multiplicity: 1299
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,107)\)
- Multiplicity: 9747
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,96,114)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,116,112)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,100)\)
- Multiplicity: 2764
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,93)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,107)\)
- Multiplicity: 4867
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,103,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,109,112)\)
- Multiplicity: 3362
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,105)\)
- Multiplicity: 1469
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,95,107)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,96,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,102,112)\)
- Multiplicity: 4867
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,98)\)
- Multiplicity: 1286
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,105)\)
- Multiplicity: 10087
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,109,117)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,95,112)\)
- Multiplicity: 401
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,91)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,98)\)
- Multiplicity: 497
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,105)\)
- Multiplicity: 1469
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,115,110)\)
- Multiplicity: 469
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,102,117)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,103)\)
- Multiplicity: 2724
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,108,110)\)
- Multiplicity: 7432
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,95,117)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,115,115)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,103)\)
- Multiplicity: 6602
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,96)\)
- Multiplicity: 734
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,101,110)\)
- Multiplicity: 4976
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,108,115)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,103)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,96)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,108)\)
- Multiplicity: 1661
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,94,110)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,101,115)\)
- Multiplicity: 1469
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,101)\)
- Multiplicity: 3309
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,94)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,108)\)
- Multiplicity: 10706
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,94,115)\)
- Multiplicity: 191
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,114,113)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,101)\)
- Multiplicity: 2351
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,94)\)
- Multiplicity: 191
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,108)\)
- Multiplicity: 2764
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,107,113)\)
- Multiplicity: 3309
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,99)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,106)\)
- Multiplicity: 3745
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,100,113)\)
- Multiplicity: 2764
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,99)\)
- Multiplicity: 2555
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,92)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,106,106)\)
- Multiplicity: 10019
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{38,\lambda}(2,1;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{38,2}(2,1;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{38,\textbf{a}}(2,1;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!