Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(1,0,0) |
(8,1,0) |
(15,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(20,5,0) |
(27,5,1) |
(33,6,2) |
(39,6,4) |
(44,9,4) |
(49,11,5) |
(54,12,7) |
(59,12,10) |
(63,16,10) |
(67,19,11) |
(71,21,13) |
(75,22,16) |
(79,22,20) |
(82,27,20) |
(85,31,21) |
(88,34,23) |
(91,36,26) |
(94,37,30) |
(97,37,35) |
(99,43,35) |
(101,48,36) |
(103,52,38) |
(105,55,41) |
(107,57,45) |
(109,58,50) |
(111,58,56) |
(112,65,56) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(118,109,86) |
(119,109,93) |
(119,113,97) |
(119,116,102) |
(119,118,108) |
(119,119,115) |
\(\lambda=(119,111,107)\)
- Multiplicity: 1
- Dimension: 315
- Dominant: No
\(\lambda=(118,113,106)\)
- Multiplicity: 2
- Dimension: 336
- Dominant: No
\(\lambda=(117,115,105)\)
- Multiplicity: 1
- Dimension: 231
- Dominant: No
\(\lambda=(119,110,108)\)
- Multiplicity: 2
- Dimension: 195
- Dominant: No
\(\lambda=(118,112,107)\)
- Multiplicity: 2
- Dimension: 273
- Dominant: No
\(\lambda=(117,114,106)\)
- Multiplicity: 2
- Dimension: 234
- Dominant: No
\(\lambda=(116,116,105)\)
- Multiplicity: 1
- Dimension: 78
- Dominant: No
\(\lambda=(116,115,106)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(118,111,108)\)
- Multiplicity: 2
- Dimension: 192
- Dominant: No
\(\lambda=(117,113,107)\)
- Multiplicity: 1
- Dimension: 210
- Dominant: No
\(\lambda=(116,114,107)\)
- Multiplicity: 1
- Dimension: 132
- Dominant: No
\(\lambda=(118,118,101)\)
- Multiplicity: 1
- Dimension: 171
- Dominant: Yes
\(\lambda=(119,116,102)\)
- Multiplicity: 1
- Dimension: 570
- Dominant: Yes
\(\lambda=(118,110,109)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: No
\(\lambda=(117,112,108)\)
- Multiplicity: 2
- Dimension: 165
- Dominant: No
\(\lambda=(116,113,108)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(118,117,102)\)
- Multiplicity: 1
- Dimension: 288
- Dominant: No
\(\lambda=(119,115,103)\)
- Multiplicity: 1
- Dimension: 585
- Dominant: No
\(\lambda=(117,111,109)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(115,114,108)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: No
\(\lambda=(116,112,109)\)
- Multiplicity: 1
- Dimension: 90
- Dominant: No
\(\lambda=(118,116,103)\)
- Multiplicity: 2
- Dimension: 357
- Dominant: No
\(\lambda=(119,114,104)\)
- Multiplicity: 2
- Dimension: 561
- Dominant: No
\(\lambda=(117,110,110)\)
- Multiplicity: 1
- Dimension: 36
- Dominant: No
\(\lambda=(116,111,110)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: No
\(\lambda=(118,115,104)\)
- Multiplicity: 2
- Dimension: 384
- Dominant: No
\(\lambda=(119,113,105)\)
- Multiplicity: 1
- Dimension: 504
- Dominant: No
\(\lambda=(115,112,110)\)
- Multiplicity: 1
- Dimension: 42
- Dominant: No
\(\lambda=(118,114,105)\)
- Multiplicity: 2
- Dimension: 375
- Dominant: No
\(\lambda=(119,112,106)\)
- Multiplicity: 2
- Dimension: 420
- Dominant: No
\(\lambda=(117,116,104)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: No
\(\textbf{a}=(113,115,109)\)
- Multiplicity: 111
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,116)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,108)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,115)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,108)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,114)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,115)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,107)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,113)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,114)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,106)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,113)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,112)\)
- Multiplicity: 154
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,118)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,112)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,111)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,105)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,111)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,104)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,117)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,110)\)
- Multiplicity: 141
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,119,103)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,117)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,109)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,116)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,109)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,108)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,115)\)
- Multiplicity: 111
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,116)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,118,101)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,108)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,114)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,115)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,107)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,113)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,114)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,106)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,113)\)
- Multiplicity: 167
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,112)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,113)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,118)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,112)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,111)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,105)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,111)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,104)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,117)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,118)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,110)\)
- Multiplicity: 141
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,116)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,117)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,109)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,116)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,109)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,116,102)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,115)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,108)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,114)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,115)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,107)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,114)\)
- Multiplicity: 141
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,106)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,113)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,106)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,112)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,113)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,118)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,112)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,111)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,105)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,111)\)
- Multiplicity: 154
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,104)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,117)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,118)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,110)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,117)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,110)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,109)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,116)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,109)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,102)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,115)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,116)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,108)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,114)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,115)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,107)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,114)\)
- Multiplicity: 154
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,113)\)
- Multiplicity: 141
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,106)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,112)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,113)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,118)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,112)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,105)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,111)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,104)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,117)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,118)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,110)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,117)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,110)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,109)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,115,103)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,116)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,117)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,109)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,102)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,115)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,116)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,108)\)
- Multiplicity: 92
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,115)\)
- Multiplicity: 111
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,107)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,114)\)
- Multiplicity: 154
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,107)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,113)\)
- Multiplicity: 111
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,114)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,106)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,112)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,113)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,112)\)
- Multiplicity: 154
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,105)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,111)\)
- Multiplicity: 154
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,118)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,111)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,110)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,117)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,110)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,103)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,116)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,117)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,109)\)
- Multiplicity: 111
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,119,102)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,115)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,116)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,108)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,115)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,107)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,114)\)
- Multiplicity: 141
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,107)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,113)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,114)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,106)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,112)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,113)\)
- Multiplicity: 111
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,112)\)
- Multiplicity: 167
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,105)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,111)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,118)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,111)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,110)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,104)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,117)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,110)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,103)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,116)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,117)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,109)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,115)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,116)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,108)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,115)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,108)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,114)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,115)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,107)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,113)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,114)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,106)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,113)\)
- Multiplicity: 141
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,112)\)
- Multiplicity: 167
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,105)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,118)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,112)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,111)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,111)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,110)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,104)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,117)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,110)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,103)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,116)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,117)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{40,\lambda}(2,1;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{40,2}(2,1;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
114 |
115 |
116 |
117 |
118 |
119 |
120 |
109 |
· |
· |
· |
· |
· |
· |
· |
110 |
· |
· |
· |
1
| 1
| 2
| · |
111 |
· |
· |
1
| 1
| 2
| 1
| · |
112 |
· |
1
| 1
| 2
| 2
| 2
| · |
113 |
· |
· |
1
| 1
| 2
| 1
| · |
114 |
· |
1
| 1
| 2
| 2
| 2
| · |
115 |
· |
· |
1
| 1
| 2
| 1
| · |
116 |
· |
· |
1
| 1
| 2
| 1
| · |
117 |
· |
· |
· |
· |
1
| · |
· |
118 |
· |
· |
· |
· |
1
| · |
· |
119 |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{40,\textbf{a}}(2,1;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!