Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(1,0,0) |
(8,1,0) |
(15,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(20,5,0) |
(27,5,1) |
(33,6,2) |
(39,6,4) |
(44,9,4) |
(49,11,5) |
(54,12,7) |
(59,12,10) |
(63,16,10) |
(67,19,11) |
(71,21,13) |
(75,22,16) |
(79,22,20) |
(82,27,20) |
(85,31,21) |
(88,34,23) |
(91,36,26) |
(94,37,30) |
(97,37,35) |
(99,43,35) |
(101,48,36) |
(103,52,38) |
(105,55,41) |
(107,57,45) |
(109,58,50) |
(111,58,56) |
(112,65,56) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(118,109,86) |
(119,109,93) |
(119,113,97) |
(119,116,102) |
(119,118,108) |
(119,119,115) |
\(\lambda=(118,112,99)\)
- Multiplicity: 5
- Dimension: 1029
- Dominant: No
\(\lambda=(117,106,106)\)
- Multiplicity: 2
- Dimension: 78
- Dominant: No
\(\lambda=(116,116,97)\)
- Multiplicity: 2
- Dimension: 210
- Dominant: No
\(\lambda=(115,110,104)\)
- Multiplicity: 11
- Dimension: 273
- Dominant: No
\(\lambda=(113,113,103)\)
- Multiplicity: 1
- Dimension: 66
- Dominant: No
\(\lambda=(118,111,100)\)
- Multiplicity: 6
- Dimension: 960
- Dominant: No
\(\lambda=(116,115,98)\)
- Multiplicity: 3
- Dimension: 360
- Dominant: No
\(\lambda=(115,109,105)\)
- Multiplicity: 8
- Dimension: 210
- Dominant: No
\(\lambda=(110,110,109)\)
- Multiplicity: 1
- Dimension: 3
- Dominant: No
\(\lambda=(113,112,104)\)
- Multiplicity: 4
- Dimension: 99
- Dominant: No
\(\lambda=(118,110,101)\)
- Multiplicity: 7
- Dimension: 855
- Dominant: No
\(\lambda=(116,114,99)\)
- Multiplicity: 5
- Dimension: 456
- Dominant: No
\(\lambda=(115,108,106)\)
- Multiplicity: 7
- Dimension: 132
- Dominant: No
\(\lambda=(113,111,105)\)
- Multiplicity: 5
- Dimension: 105
- Dominant: No
\(\lambda=(115,107,107)\)
- Multiplicity: 1
- Dimension: 45
- Dominant: No
\(\lambda=(118,109,102)\)
- Multiplicity: 7
- Dimension: 720
- Dominant: No
\(\lambda=(116,113,100)\)
- Multiplicity: 7
- Dimension: 504
- Dominant: No
\(\lambda=(113,110,106)\)
- Multiplicity: 7
- Dimension: 90
- Dominant: No
\(\lambda=(118,108,103)\)
- Multiplicity: 6
- Dimension: 561
- Dominant: No
\(\lambda=(116,112,101)\)
- Multiplicity: 9
- Dimension: 510
- Dominant: No
\(\lambda=(113,109,107)\)
- Multiplicity: 4
- Dimension: 60
- Dominant: No
\(\lambda=(118,107,104)\)
- Multiplicity: 4
- Dimension: 384
- Dominant: No
\(\lambda=(119,113,97)\)
- Multiplicity: 1
- Dimension: 1428
- Dominant: Yes
\(\lambda=(116,111,102)\)
- Multiplicity: 10
- Dimension: 480
- Dominant: No
\(\lambda=(113,108,108)\)
- Multiplicity: 3
- Dimension: 21
- Dominant: No
\(\lambda=(114,114,101)\)
- Multiplicity: 3
- Dimension: 105
- Dominant: No
\(\lambda=(117,116,96)\)
- Multiplicity: 1
- Dimension: 483
- Dominant: No
\(\lambda=(118,106,105)\)
- Multiplicity: 2
- Dimension: 195
- Dominant: No
\(\lambda=(119,112,98)\)
- Multiplicity: 1
- Dimension: 1380
- Dominant: No
\(\lambda=(116,110,103)\)
- Multiplicity: 12
- Dimension: 420
- Dominant: No
\(\lambda=(111,111,107)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(114,113,102)\)
- Multiplicity: 4
- Dimension: 168
- Dominant: No
\(\lambda=(117,115,97)\)
- Multiplicity: 2
- Dimension: 627
- Dominant: No
\(\lambda=(119,111,99)\)
- Multiplicity: 1
- Dimension: 1287
- Dominant: No
\(\lambda=(116,109,104)\)
- Multiplicity: 10
- Dimension: 336
- Dominant: No
\(\lambda=(111,110,108)\)
- Multiplicity: 3
- Dimension: 15
- Dominant: No
\(\lambda=(114,112,103)\)
- Multiplicity: 7
- Dimension: 195
- Dominant: No
\(\lambda=(117,114,98)\)
- Multiplicity: 4
- Dimension: 714
- Dominant: No
\(\lambda=(119,110,100)\)
- Multiplicity: 2
- Dimension: 1155
- Dominant: No
\(\lambda=(116,108,105)\)
- Multiplicity: 7
- Dimension: 234
- Dominant: No
\(\lambda=(114,111,104)\)
- Multiplicity: 8
- Dimension: 192
- Dominant: No
\(\lambda=(117,113,99)\)
- Multiplicity: 5
- Dimension: 750
- Dominant: No
\(\lambda=(119,109,101)\)
- Multiplicity: 2
- Dimension: 990
- Dominant: No
\(\lambda=(116,107,106)\)
- Multiplicity: 4
- Dimension: 120
- Dominant: No
\(\lambda=(114,110,105)\)
- Multiplicity: 9
- Dimension: 165
- Dominant: No
\(\lambda=(117,112,100)\)
- Multiplicity: 7
- Dimension: 741
- Dominant: No
\(\lambda=(119,108,102)\)
- Multiplicity: 2
- Dimension: 798
- Dominant: No
\(\lambda=(114,109,106)\)
- Multiplicity: 7
- Dimension: 120
- Dominant: No
\(\lambda=(119,107,103)\)
- Multiplicity: 2
- Dimension: 585
- Dominant: No
\(\lambda=(117,111,101)\)
- Multiplicity: 8
- Dimension: 693
- Dominant: No
\(\lambda=(115,115,99)\)
- Multiplicity: 1
- Dimension: 153
- Dominant: No
\(\lambda=(112,112,105)\)
- Multiplicity: 3
- Dimension: 36
- Dominant: No
\(\lambda=(114,108,107)\)
- Multiplicity: 4
- Dimension: 63
- Dominant: No
\(\lambda=(119,106,104)\)
- Multiplicity: 1
- Dimension: 357
- Dominant: No
\(\lambda=(118,116,95)\)
- Multiplicity: 1
- Dimension: 825
- Dominant: Yes
\(\lambda=(117,110,102)\)
- Multiplicity: 10
- Dimension: 612
- Dominant: No
\(\lambda=(115,114,100)\)
- Multiplicity: 4
- Dimension: 255
- Dominant: No
\(\lambda=(112,111,106)\)
- Multiplicity: 4
- Dimension: 48
- Dominant: No
\(\lambda=(118,115,96)\)
- Multiplicity: 2
- Dimension: 960
- Dominant: No
\(\lambda=(117,109,103)\)
- Multiplicity: 9
- Dimension: 504
- Dominant: No
\(\lambda=(115,113,101)\)
- Multiplicity: 5
- Dimension: 312
- Dominant: No
\(\lambda=(112,110,107)\)
- Multiplicity: 5
- Dimension: 42
- Dominant: No
\(\lambda=(118,114,97)\)
- Multiplicity: 3
- Dimension: 1035
- Dominant: No
\(\lambda=(117,108,104)\)
- Multiplicity: 8
- Dimension: 375
- Dominant: No
\(\lambda=(115,112,102)\)
- Multiplicity: 8
- Dimension: 330
- Dominant: No
\(\lambda=(112,109,108)\)
- Multiplicity: 3
- Dimension: 24
- Dominant: No
\(\lambda=(118,113,98)\)
- Multiplicity: 4
- Dimension: 1056
- Dominant: No
\(\lambda=(117,107,105)\)
- Multiplicity: 4
- Dimension: 231
- Dominant: No
\(\lambda=(115,111,103)\)
- Multiplicity: 9
- Dimension: 315
- Dominant: No
\(\textbf{a}=(110,112,107)\)
- Multiplicity: 1236
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,100)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,106,114)\)
- Multiplicity: 809
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,113,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,107)\)
- Multiplicity: 185
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,100)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,119,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,114)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,106,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,105)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,112)\)
- Multiplicity: 876
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,105)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,98)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,112)\)
- Multiplicity: 876
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,99,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,110)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,98,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,112,117)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,110)\)
- Multiplicity: 1441
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,103)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,105,117)\)
- Multiplicity: 185
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,110)\)
- Multiplicity: 470
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,96)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,103)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,118,115)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,98,117)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,108)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,115)\)
- Multiplicity: 377
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,108)\)
- Multiplicity: 1441
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,101)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,115)\)
- Multiplicity: 470
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,108)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,101)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,113)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,115)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,106)\)
- Multiplicity: 373
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,113)\)
- Multiplicity: 982
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,106)\)
- Multiplicity: 809
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,99)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,113)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,111)\)
- Multiplicity: 208
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,110,118)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,104)\)
- Multiplicity: 470
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,111)\)
- Multiplicity: 1491
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,103,118)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,97)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,104)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,111)\)
- Multiplicity: 208
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,96,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,109)\)
- Multiplicity: 542
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,116)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,109)\)
- Multiplicity: 1323
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,102)\)
- Multiplicity: 329
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,116)\)
- Multiplicity: 208
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,109)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,114)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,95,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,107)\)
- Multiplicity: 858
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,114)\)
- Multiplicity: 858
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,107)\)
- Multiplicity: 606
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,100)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,114)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,108,119)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,112)\)
- Multiplicity: 459
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,105)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,98)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,112)\)
- Multiplicity: 1236
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,101,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,98)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,105)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,112)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,114,117)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,110)\)
- Multiplicity: 982
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,103)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,107,117)\)
- Multiplicity: 185
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,110)\)
- Multiplicity: 982
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,96)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,103)\)
- Multiplicity: 459
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,100,117)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,108)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,115)\)
- Multiplicity: 199
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,108)\)
- Multiplicity: 1323
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,101)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,115)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,108)\)
- Multiplicity: 354
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,101)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,119,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,115)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,106)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,113)\)
- Multiplicity: 662
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,106)\)
- Multiplicity: 1077
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,99)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,113)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,106)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,111)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,113)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,112,118)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,104)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,111)\)
- Multiplicity: 1288
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,105,118)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,97)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,104)\)
- Multiplicity: 470
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,111)\)
- Multiplicity: 594
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,118,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,98,118)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,109)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,116)\)
- Multiplicity: 208
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,109)\)
- Multiplicity: 1558
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,102)\)
- Multiplicity: 208
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,116)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,109)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,102)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,114)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,107)\)
- Multiplicity: 373
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,114)\)
- Multiplicity: 717
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,107)\)
- Multiplicity: 1078
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,100)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,114)\)
- Multiplicity: 459
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,110,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,112)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,105)\)
- Multiplicity: 542
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,112)\)
- Multiplicity: 1323
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,103,119)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,98)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,105)\)
- Multiplicity: 354
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,112)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,116,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,110)\)
- Multiplicity: 470
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,109,117)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,110)\)
- Multiplicity: 1441
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,103)\)
- Multiplicity: 459
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,102,117)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,110)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,103)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,115)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,95,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,108)\)
- Multiplicity: 858
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,115)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,108)\)
- Multiplicity: 858
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,101)\)
- Multiplicity: 199
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,115)\)
- Multiplicity: 199
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,113)\)
- Multiplicity: 329
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,106)\)
- Multiplicity: 982
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,99)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,113)\)
- Multiplicity: 1078
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,106)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,99)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,113)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,114,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,104)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,111)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,107,118)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,97)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,104)\)
- Multiplicity: 662
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,111)\)
- Multiplicity: 1077
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,100,118)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,109)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,111)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,116)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,109)\)
- Multiplicity: 1323
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,102)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,116)\)
- Multiplicity: 373
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,109)\)
- Multiplicity: 542
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,95)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,102)\)
- Multiplicity: 208
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,116)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,107)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,114)\)
- Multiplicity: 459
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,107)\)
- Multiplicity: 1288
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,100)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,114)\)
- Multiplicity: 717
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,112,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,107)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,100)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,112)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,114)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,105,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,105)\)
- Multiplicity: 185
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,112)\)
- Multiplicity: 1077
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,105)\)
- Multiplicity: 717
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,98)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,112)\)
- Multiplicity: 662
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,98,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,110)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,111,117)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,110)\)
- Multiplicity: 1558
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,103)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,104,117)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,110)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,96)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,103)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,115)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,97,117)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,108)\)
- Multiplicity: 354
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,115)\)
- Multiplicity: 470
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,108)\)
- Multiplicity: 1323
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,101)\)
- Multiplicity: 199
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,115)\)
- Multiplicity: 377
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,108)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,113)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,96,115)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,106)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,113)\)
- Multiplicity: 1078
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,106)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,99)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,113)\)
- Multiplicity: 329
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,116,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,111)\)
- Multiplicity: 377
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,109,118)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,104)\)
- Multiplicity: 594
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,111)\)
- Multiplicity: 1441
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,102,118)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,97)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,104)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,111)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,116)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,95,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,109)\)
- Multiplicity: 809
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,116)\)
- Multiplicity: 354
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,109)\)
- Multiplicity: 1078
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,102)\)
- Multiplicity: 329
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,116)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,114)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,107)\)
- Multiplicity: 1078
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,100)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,114)\)
- Multiplicity: 858
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,107)\)
- Multiplicity: 373
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,100)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,114)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,107,119)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,105)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,112)\)
- Multiplicity: 662
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,105)\)
- Multiplicity: 876
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,98)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,112)\)
- Multiplicity: 1077
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,100,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,105)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,110)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,112)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,113,117)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,110)\)
- Multiplicity: 1236
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,103)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,106,117)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,110)\)
- Multiplicity: 717
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,96)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,103)\)
- Multiplicity: 377
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,99,117)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,108)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,115)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,108)\)
- Multiplicity: 1441
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,101)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,115)\)
- Multiplicity: 542
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,108)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,101)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,113)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,115)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,106)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,113)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,106)\)
- Multiplicity: 982
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,99)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,113)\)
- Multiplicity: 662
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,111)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,97,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,111,118)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,104)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,111)\)
- Multiplicity: 1441
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,104,118)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,97)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,104)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,111)\)
- Multiplicity: 377
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,117,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,97,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,109)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,116)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,109)\)
- Multiplicity: 1491
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,102)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,116)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,109)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,102)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,114)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,96,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,107)\)
- Multiplicity: 606
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,114)\)
- Multiplicity: 809
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,107)\)
- Multiplicity: 858
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,100)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,114)\)
- Multiplicity: 329
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,109,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,112)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,105)\)
- Multiplicity: 717
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,112)\)
- Multiplicity: 1323
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,102,119)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,98)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,105)\)
- Multiplicity: 185
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,112)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,115,117)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,110)\)
- Multiplicity: 717
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,108,117)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,110)\)
- Multiplicity: 1236
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,103)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,101,117)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,110)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,115)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,108)\)
- Multiplicity: 1115
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,101)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,115)\)
- Multiplicity: 606
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,108)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,101)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,115)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,106)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,113)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,106)\)
- Multiplicity: 1077
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,99)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,113)\)
- Multiplicity: 982
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,106)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,99)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,111)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,113)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,113,118)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,104)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,111)\)
- Multiplicity: 1077
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,106,118)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,97)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,104)\)
- Multiplicity: 594
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,111)\)
- Multiplicity: 832
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,99,118)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,109)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,116)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,109)\)
- Multiplicity: 1491
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,102)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,116)\)
- Multiplicity: 354
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,109)\)
- Multiplicity: 318
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,95)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,102)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,114)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,116)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,107)\)
- Multiplicity: 185
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,114)\)
- Multiplicity: 594
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,107)\)
- Multiplicity: 1236
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,100)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,114)\)
- Multiplicity: 594
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,111,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,107)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,112)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,114)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,105)\)
- Multiplicity: 354
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,112)\)
- Multiplicity: 1236
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,104,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,98)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,105)\)
- Multiplicity: 542
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,112)\)
- Multiplicity: 459
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,117,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,97,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,110)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,110,117)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,110)\)
- Multiplicity: 1558
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,103)\)
- Multiplicity: 377
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,103,117)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,110)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,103)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,115)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,96,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,108)\)
- Multiplicity: 591
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,115)\)
- Multiplicity: 542
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,108)\)
- Multiplicity: 1115
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,101)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,115)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,113)\)
- Multiplicity: 199
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,106)\)
- Multiplicity: 809
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,113)\)
- Multiplicity: 1115
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,106)\)
- Multiplicity: 373
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,99)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,113)\)
- Multiplicity: 199
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,115,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,111)\)
- Multiplicity: 594
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,108,118)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,97)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,104)\)
- Multiplicity: 662
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,111)\)
- Multiplicity: 1288
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,101,118)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,104)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,111)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,116)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,109)\)
- Multiplicity: 1078
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,102)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,116)\)
- Multiplicity: 373
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,109)\)
- Multiplicity: 809
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,95)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,102)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,116)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,107)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,114)\)
- Multiplicity: 329
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{39,\lambda}(2,1;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{39,2}(2,1;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
105 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
106 |
· |
· |
· |
· |
· |
· |
· |
· |
2
| 2
| 1
| · |
107 |
· |
· |
· |
· |
· |
· |
1
| 4
| 4
| 4
| 2
| · |
108 |
· |
· |
· |
· |
3
| 4
| 7
| 7
| 8
| 6
| 2
| · |
109 |
· |
· |
· |
3
| 4
| 7
| 8
| 10
| 9
| 7
| 2
| · |
110 |
· |
1
| 3
| 5
| 7
| 9
| 11
| 12
| 10
| 7
| 2
| · |
111 |
· |
· |
1
| 4
| 5
| 8
| 9
| 10
| 8
| 6
| 1
| · |
112 |
· |
· |
· |
3
| 4
| 7
| 8
| 9
| 7
| 5
| 1
| · |
113 |
· |
· |
· |
· |
1
| 4
| 5
| 7
| 5
| 4
| 1
| · |
114 |
· |
· |
· |
· |
· |
3
| 4
| 5
| 4
| 3
| · |
· |
115 |
· |
· |
· |
· |
· |
· |
1
| 3
| 2
| 2
| · |
· |
116 |
· |
· |
· |
· |
· |
· |
· |
2
| 1
| 1
| · |
· |
117 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{39,\textbf{a}}(2,1;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!