Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(5,0,0) |
(12,1,0) |
(19,1,1) |
(25,3,1) |
(31,4,2) |
(37,4,4) |
(42,7,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(96,47,30) |
(99,47,35) |
(101,52,36) |
(103,56,38) |
(105,59,41) |
(107,61,45) |
(109,62,50) |
(111,62,56) |
(112,69,56) |
(113,75,57) |
(114,80,59) |
(115,84,62) |
(116,87,66) |
(117,89,71) |
(118,90,77) |
(119,90,84) |
(119,97,85) |
(119,103,87) |
(119,108,90) |
(119,112,94) |
(119,115,99) |
(119,117,105) |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(119,119,119) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
1 |
5 |
37 |
75 |
115 |
157 |
198 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
742 |
743 |
741 |
729 |
718 |
698 |
673 |
639 |
608 |
567 |
525 |
477 |
430 |
380 |
331 |
278 |
228 |
179 |
133 |
89 |
45 |
4 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
\(\lambda=(112,107,106)\)
- Multiplicity: 5
- Dimension: 48
- Dominant: No
\(\lambda=(113,113,99)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(115,109,101)\)
- Multiplicity: 16
- Dimension: 504
- Dominant: No
\(\lambda=(118,111,96)\)
- Multiplicity: 6
- Dimension: 1536
- Dominant: No
\(\lambda=(117,105,103)\)
- Multiplicity: 6
- Dimension: 312
- Dominant: No
\(\lambda=(116,115,94)\)
- Multiplicity: 2
- Dimension: 528
- Dominant: No
\(\lambda=(110,110,105)\)
- Multiplicity: 4
- Dimension: 21
- Dominant: No
\(\lambda=(113,112,100)\)
- Multiplicity: 7
- Dimension: 195
- Dominant: No
\(\lambda=(115,108,102)\)
- Multiplicity: 17
- Dimension: 420
- Dominant: No
\(\lambda=(118,110,97)\)
- Multiplicity: 8
- Dimension: 1449
- Dominant: No
\(\lambda=(117,104,104)\)
- Multiplicity: 4
- Dimension: 105
- Dominant: No
\(\lambda=(116,114,95)\)
- Multiplicity: 4
- Dimension: 690
- Dominant: No
\(\lambda=(110,109,106)\)
- Multiplicity: 3
- Dimension: 24
- Dominant: No
\(\lambda=(113,111,101)\)
- Multiplicity: 10
- Dimension: 231
- Dominant: No
\(\lambda=(115,107,103)\)
- Multiplicity: 13
- Dimension: 315
- Dominant: No
\(\lambda=(118,109,98)\)
- Multiplicity: 9
- Dimension: 1320
- Dominant: No
\(\lambda=(116,113,96)\)
- Multiplicity: 6
- Dimension: 792
- Dominant: No
\(\lambda=(110,108,107)\)
- Multiplicity: 2
- Dimension: 15
- Dominant: No
\(\lambda=(113,110,102)\)
- Multiplicity: 15
- Dimension: 234
- Dominant: No
\(\lambda=(115,106,104)\)
- Multiplicity: 10
- Dimension: 195
- Dominant: No
\(\lambda=(118,108,99)\)
- Multiplicity: 9
- Dimension: 1155
- Dominant: No
\(\lambda=(116,112,97)\)
- Multiplicity: 9
- Dimension: 840
- Dominant: No
\(\lambda=(113,109,103)\)
- Multiplicity: 14
- Dimension: 210
- Dominant: No
\(\lambda=(115,105,105)\)
- Multiplicity: 2
- Dimension: 66
- Dominant: No
\(\lambda=(118,107,100)\)
- Multiplicity: 9
- Dimension: 960
- Dominant: No
\(\lambda=(116,111,98)\)
- Multiplicity: 12
- Dimension: 840
- Dominant: No
\(\lambda=(113,108,104)\)
- Multiplicity: 14
- Dimension: 165
- Dominant: No
\(\lambda=(114,114,97)\)
- Multiplicity: 3
- Dimension: 171
- Dominant: No
\(\lambda=(117,116,92)\)
- Multiplicity: 1
- Dimension: 675
- Dominant: No
\(\lambda=(118,106,101)\)
- Multiplicity: 8
- Dimension: 741
- Dominant: No
\(\lambda=(119,112,94)\)
- Multiplicity: 1
- Dimension: 2052
- Dominant: Yes
\(\lambda=(116,110,99)\)
- Multiplicity: 15
- Dimension: 798
- Dominant: No
\(\lambda=(111,111,103)\)
- Multiplicity: 4
- Dimension: 45
- Dominant: No
\(\lambda=(113,107,105)\)
- Multiplicity: 7
- Dimension: 105
- Dominant: No
\(\lambda=(114,113,98)\)
- Multiplicity: 5
- Dimension: 288
- Dominant: No
\(\lambda=(117,115,93)\)
- Multiplicity: 1
- Dimension: 897
- Dominant: No
\(\lambda=(118,105,102)\)
- Multiplicity: 6
- Dimension: 504
- Dominant: No
\(\lambda=(119,111,95)\)
- Multiplicity: 1
- Dimension: 1989
- Dominant: No
\(\lambda=(116,109,100)\)
- Multiplicity: 16
- Dimension: 720
- Dominant: No
\(\lambda=(111,110,104)\)
- Multiplicity: 8
- Dimension: 63
- Dominant: No
\(\lambda=(113,106,106)\)
- Multiplicity: 4
- Dimension: 36
- Dominant: No
\(\lambda=(114,112,99)\)
- Multiplicity: 9
- Dimension: 357
- Dominant: No
\(\lambda=(117,114,94)\)
- Multiplicity: 3
- Dimension: 1050
- Dominant: No
\(\lambda=(118,104,103)\)
- Multiplicity: 3
- Dimension: 255
- Dominant: No
\(\lambda=(119,110,96)\)
- Multiplicity: 2
- Dimension: 1875
- Dominant: No
\(\lambda=(116,108,101)\)
- Multiplicity: 16
- Dimension: 612
- Dominant: No
\(\lambda=(111,109,105)\)
- Multiplicity: 6
- Dimension: 60
- Dominant: No
\(\lambda=(114,111,100)\)
- Multiplicity: 13
- Dimension: 384
- Dominant: No
\(\lambda=(119,109,97)\)
- Multiplicity: 2
- Dimension: 1716
- Dominant: No
\(\lambda=(117,113,95)\)
- Multiplicity: 4
- Dimension: 1140
- Dominant: No
\(\lambda=(116,107,102)\)
- Multiplicity: 14
- Dimension: 480
- Dominant: No
\(\lambda=(111,108,106)\)
- Multiplicity: 6
- Dimension: 42
- Dominant: No
\(\lambda=(114,110,101)\)
- Multiplicity: 17
- Dimension: 375
- Dominant: No
\(\lambda=(119,108,98)\)
- Multiplicity: 4
- Dimension: 1518
- Dominant: No
\(\lambda=(117,112,96)\)
- Multiplicity: 7
- Dimension: 1173
- Dominant: No
\(\lambda=(116,106,103)\)
- Multiplicity: 11
- Dimension: 330
- Dominant: No
\(\lambda=(111,107,107)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(114,109,102)\)
- Multiplicity: 17
- Dimension: 336
- Dominant: No
\(\lambda=(119,107,99)\)
- Multiplicity: 3
- Dimension: 1287
- Dominant: No
\(\lambda=(117,111,97)\)
- Multiplicity: 8
- Dimension: 1155
- Dominant: No
\(\lambda=(116,105,104)\)
- Multiplicity: 6
- Dimension: 168
- Dominant: No
\(\lambda=(115,115,95)\)
- Multiplicity: 1
- Dimension: 231
- Dominant: No
\(\lambda=(112,112,101)\)
- Multiplicity: 5
- Dimension: 78
- Dominant: No
\(\lambda=(114,108,103)\)
- Multiplicity: 16
- Dimension: 273
- Dominant: No
\(\lambda=(119,106,100)\)
- Multiplicity: 4
- Dimension: 1029
- Dominant: No
\(\lambda=(117,110,98)\)
- Multiplicity: 12
- Dimension: 1092
- Dominant: No
\(\lambda=(115,114,96)\)
- Multiplicity: 3
- Dimension: 399
- Dominant: No
\(\lambda=(112,111,102)\)
- Multiplicity: 9
- Dimension: 120
- Dominant: No
\(\lambda=(114,107,104)\)
- Multiplicity: 12
- Dimension: 192
- Dominant: No
\(\lambda=(115,113,97)\)
- Multiplicity: 5
- Dimension: 510
- Dominant: No
\(\lambda=(119,105,101)\)
- Multiplicity: 2
- Dimension: 750
- Dominant: No
\(\lambda=(118,115,92)\)
- Multiplicity: 1
- Dimension: 1344
- Dominant: Yes
\(\lambda=(117,109,99)\)
- Multiplicity: 12
- Dimension: 990
- Dominant: No
\(\lambda=(109,108,108)\)
- Multiplicity: 1
- Dimension: 3
- Dominant: No
\(\lambda=(112,110,103)\)
- Multiplicity: 13
- Dimension: 132
- Dominant: No
\(\lambda=(114,106,105)\)
- Multiplicity: 7
- Dimension: 99
- Dominant: No
\(\lambda=(115,112,98)\)
- Multiplicity: 9
- Dimension: 570
- Dominant: No
\(\lambda=(119,104,102)\)
- Multiplicity: 3
- Dimension: 456
- Dominant: No
\(\lambda=(118,114,93)\)
- Multiplicity: 2
- Dimension: 1485
- Dominant: No
\(\lambda=(117,108,100)\)
- Multiplicity: 14
- Dimension: 855
- Dominant: No
\(\lambda=(112,109,104)\)
- Multiplicity: 12
- Dimension: 120
- Dominant: No
\(\lambda=(115,111,99)\)
- Multiplicity: 12
- Dimension: 585
- Dominant: No
\(\lambda=(118,113,94)\)
- Multiplicity: 3
- Dimension: 1560
- Dominant: No
\(\lambda=(117,107,101)\)
- Multiplicity: 11
- Dimension: 693
- Dominant: No
\(\lambda=(112,108,105)\)
- Multiplicity: 10
- Dimension: 90
- Dominant: No
\(\lambda=(115,110,100)\)
- Multiplicity: 16
- Dimension: 561
- Dominant: No
\(\lambda=(118,112,95)\)
- Multiplicity: 4
- Dimension: 1575
- Dominant: No
\(\lambda=(117,106,102)\)
- Multiplicity: 11
- Dimension: 510
- Dominant: No
\(\lambda=(116,116,93)\)
- Multiplicity: 1
- Dimension: 300
- Dominant: No
\(\textbf{a}=(115,93,117)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,113,115)\)
- Multiplicity: 160
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,103)\)
- Multiplicity: 286
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,96)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,119,108)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,110)\)
- Multiplicity: 265
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,106,115)\)
- Multiplicity: 948
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,101)\)
- Multiplicity: 95
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,108)\)
- Multiplicity: 2311
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,99,115)\)
- Multiplicity: 369
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,94)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,101)\)
- Multiplicity: 971
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,108)\)
- Multiplicity: 2311
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,106)\)
- Multiplicity: 95
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,98,108)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,112,113)\)
- Multiplicity: 704
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,92,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,106)\)
- Multiplicity: 2831
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,99)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,105,113)\)
- Multiplicity: 1893
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,112,118)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,106)\)
- Multiplicity: 948
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,92)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,99)\)
- Multiplicity: 265
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,118,111)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,98,113)\)
- Multiplicity: 292
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,105,118)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,104)\)
- Multiplicity: 296
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,111)\)
- Multiplicity: 1820
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,98,118)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,104)\)
- Multiplicity: 2250
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,97)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,111)\)
- Multiplicity: 2250
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,111,116)\)
- Multiplicity: 189
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,104)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,97)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,109)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,111)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,104,116)\)
- Multiplicity: 582
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,102)\)
- Multiplicity: 498
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,109)\)
- Multiplicity: 3048
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,97,116)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,102)\)
- Multiplicity: 1041
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,95)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,109)\)
- Multiplicity: 1525
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,117,114)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,107)\)
- Multiplicity: 498
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,110,114)\)
- Multiplicity: 838
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,100)\)
- Multiplicity: 504
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,107)\)
- Multiplicity: 3338
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,103,114)\)
- Multiplicity: 1221
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,110,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,93)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,100)\)
- Multiplicity: 195
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,107)\)
- Multiplicity: 498
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,112)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,96,114)\)
- Multiplicity: 94
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,103,119)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,105)\)
- Multiplicity: 970
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,112)\)
- Multiplicity: 2069
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,96,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,116,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,105)\)
- Multiplicity: 2311
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,98)\)
- Multiplicity: 292
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,112)\)
- Multiplicity: 1381
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,109,117)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,105)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,110)\)
- Multiplicity: 504
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,95,112)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,102,117)\)
- Multiplicity: 266
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,103)\)
- Multiplicity: 1221
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,110)\)
- Multiplicity: 3231
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,95,117)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,115,115)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,103)\)
- Multiplicity: 874
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,96)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,110)\)
- Multiplicity: 838
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,108,115)\)
- Multiplicity: 770
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,108)\)
- Multiplicity: 1221
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,101,115)\)
- Multiplicity: 639
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,94)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,101)\)
- Multiplicity: 971
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,108)\)
- Multiplicity: 3231
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,94,115)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,94)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,101)\)
- Multiplicity: 95
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,108)\)
- Multiplicity: 195
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,114,113)\)
- Multiplicity: 292
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,106)\)
- Multiplicity: 1948
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,99)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,107,113)\)
- Multiplicity: 1893
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,114,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,106)\)
- Multiplicity: 1948
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,99)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,100,113)\)
- Multiplicity: 704
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,107,118)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,104)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,111)\)
- Multiplicity: 971
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,100,118)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,104)\)
- Multiplicity: 2069
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,97)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,111)\)
- Multiplicity: 2831
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,93,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,113,116)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,104)\)
- Multiplicity: 582
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,97)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,119,109)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,111)\)
- Multiplicity: 369
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,106,116)\)
- Multiplicity: 552
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,102)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,109)\)
- Multiplicity: 2069
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,99,116)\)
- Multiplicity: 265
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,102)\)
- Multiplicity: 1381
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,95)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,109)\)
- Multiplicity: 2596
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,92,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,102)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,107)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,109)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,112,114)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,100)\)
- Multiplicity: 195
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,107)\)
- Multiplicity: 2906
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,105,114)\)
- Multiplicity: 1430
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,112,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,93)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,100)\)
- Multiplicity: 504
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,107)\)
- Multiplicity: 1357
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,118,112)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,98,114)\)
- Multiplicity: 292
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,105,119)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,105)\)
- Multiplicity: 286
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,112)\)
- Multiplicity: 1381
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,98,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,105)\)
- Multiplicity: 2706
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,98)\)
- Multiplicity: 189
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,112)\)
- Multiplicity: 2069
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,111,117)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,105)\)
- Multiplicity: 286
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,98)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,110)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,112)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,104,117)\)
- Multiplicity: 296
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,103)\)
- Multiplicity: 552
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,110)\)
- Multiplicity: 2706
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,97,117)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,117,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,103)\)
- Multiplicity: 1525
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,96)\)
- Multiplicity: 94
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,110)\)
- Multiplicity: 1745
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,110,115)\)
- Multiplicity: 504
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,108)\)
- Multiplicity: 427
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,96,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,103,115)\)
- Multiplicity: 874
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,101)\)
- Multiplicity: 639
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,108)\)
- Multiplicity: 3447
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,96,115)\)
- Multiplicity: 94
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,94)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,101)\)
- Multiplicity: 427
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,108)\)
- Multiplicity: 770
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,116,113)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,106)\)
- Multiplicity: 948
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,109,113)\)
- Multiplicity: 1525
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,106)\)
- Multiplicity: 2831
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,99)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,102,113)\)
- Multiplicity: 1259
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,109,118)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,106)\)
- Multiplicity: 95
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,99)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,111)\)
- Multiplicity: 369
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,95,113)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,102,118)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,104)\)
- Multiplicity: 1357
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,111)\)
- Multiplicity: 2831
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,95,118)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,115,116)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,104)\)
- Multiplicity: 1357
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,97)\)
- Multiplicity: 160
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,111)\)
- Multiplicity: 971
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,108,116)\)
- Multiplicity: 427
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,109)\)
- Multiplicity: 1041
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,101,116)\)
- Multiplicity: 427
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,102)\)
- Multiplicity: 1259
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,95)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,109)\)
- Multiplicity: 3338
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,94,116)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,102)\)
- Multiplicity: 266
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,95)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,109)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,114,114)\)
- Multiplicity: 175
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,100)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,107)\)
- Multiplicity: 1893
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,107,114)\)
- Multiplicity: 1357
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,93)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,100)\)
- Multiplicity: 704
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,107)\)
- Multiplicity: 2440
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,100,114)\)
- Multiplicity: 633
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,107,119)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,107)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,105)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,112)\)
- Multiplicity: 704
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,93,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,100,119)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,105)\)
- Multiplicity: 2311
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,98)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,112)\)
- Multiplicity: 2440
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,113,117)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,105)\)
- Multiplicity: 970
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,98)\)
- Multiplicity: 189
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,119,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,112)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,106,117)\)
- Multiplicity: 266
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,103)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,110)\)
- Multiplicity: 1745
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,99,117)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,103)\)
- Multiplicity: 1820
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,96)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,110)\)
- Multiplicity: 2706
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,92,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,112,115)\)
- Multiplicity: 254
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,103)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,96)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,108)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,110)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,105,115)\)
- Multiplicity: 970
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,101)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,108)\)
- Multiplicity: 2831
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,98,115)\)
- Multiplicity: 254
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,94)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,101)\)
- Multiplicity: 838
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,108)\)
- Multiplicity: 1751
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,118,113)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,106)\)
- Multiplicity: 266
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,111,113)\)
- Multiplicity: 971
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,106)\)
- Multiplicity: 3048
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,99)\)
- Multiplicity: 265
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,104,113)\)
- Multiplicity: 1751
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,111,118)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,106)\)
- Multiplicity: 552
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,99)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,111)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,97,113)\)
- Multiplicity: 160
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,104,118)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,104)\)
- Multiplicity: 582
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,111)\)
- Multiplicity: 2250
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,97,118)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,117,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,104)\)
- Multiplicity: 2069
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,97)\)
- Multiplicity: 160
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,111)\)
- Multiplicity: 1820
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,110,116)\)
- Multiplicity: 265
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,104)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,109)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,96,111)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,103,116)\)
- Multiplicity: 552
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,102)\)
- Multiplicity: 770
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,109)\)
- Multiplicity: 3338
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,96,116)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,102)\)
- Multiplicity: 770
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,95)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,109)\)
- Multiplicity: 1041
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,116,114)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,107)\)
- Multiplicity: 874
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,109,114)\)
- Multiplicity: 1041
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,100)\)
- Multiplicity: 633
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,107)\)
- Multiplicity: 3231
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,102,114)\)
- Multiplicity: 1041
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,109,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,100)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,107)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,112)\)
- Multiplicity: 254
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,95,114)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,102,119)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,105)\)
- Multiplicity: 1430
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,112)\)
- Multiplicity: 2311
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,95,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,115,117)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,105)\)
- Multiplicity: 1893
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,98)\)
- Multiplicity: 292
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,112)\)
- Multiplicity: 1022
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,108,117)\)
- Multiplicity: 195
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,110)\)
- Multiplicity: 838
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,94,112)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,101,117)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,103)\)
- Multiplicity: 1525
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,96)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,110)\)
- Multiplicity: 3231
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,94,117)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,114,115)\)
- Multiplicity: 94
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,103)\)
- Multiplicity: 552
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,96)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,110)\)
- Multiplicity: 504
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,107,115)\)
- Multiplicity: 874
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,101)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,108)\)
- Multiplicity: 1751
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,100,115)\)
- Multiplicity: 504
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,94)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,101)\)
- Multiplicity: 1022
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,108)\)
- Multiplicity: 2831
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,93,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,106)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,101)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,108)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,113,113)\)
- Multiplicity: 471
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,106)\)
- Multiplicity: 2440
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,99)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,106,113)\)
- Multiplicity: 1948
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,113,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,106)\)
- Multiplicity: 1430
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,92)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,99)\)
- Multiplicity: 369
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,119,111)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,99,113)\)
- Multiplicity: 471
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,106,118)\)
- Multiplicity: 95
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,104)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,111)\)
- Multiplicity: 1381
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,99,118)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,104)\)
- Multiplicity: 2250
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,97)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,111)\)
- Multiplicity: 2596
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,92,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,112,116)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,104)\)
- Multiplicity: 296
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,97)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,109)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,111)\)
- Multiplicity: 189
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,105,116)\)
- Multiplicity: 582
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,102)\)
- Multiplicity: 266
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,109)\)
- Multiplicity: 2596
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,98,116)\)
- Multiplicity: 189
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,102)\)
- Multiplicity: 1259
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,95)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,109)\)
- Multiplicity: 2069
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,118,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,107)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,97,109)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,111,114)\)
- Multiplicity: 633
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,100)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,107)\)
- Multiplicity: 3231
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,104,114)\)
- Multiplicity: 1357
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,111,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,93)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,100)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,107)\)
- Multiplicity: 874
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,117,112)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,97,114)\)
- Multiplicity: 175
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,104,119)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,105)\)
- Multiplicity: 582
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,112)\)
- Multiplicity: 1745
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,97,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,105)\)
- Multiplicity: 2596
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,98)\)
- Multiplicity: 254
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,112)\)
- Multiplicity: 1745
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,110,117)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,105)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,98)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,110)\)
- Multiplicity: 265
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,96,112)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,103,117)\)
- Multiplicity: 286
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,103)\)
- Multiplicity: 874
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,110)\)
- Multiplicity: 3048
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,96,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,116,115)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,103)\)
- Multiplicity: 1221
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,96)\)
- Multiplicity: 94
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,110)\)
- Multiplicity: 1259
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,109,115)\)
- Multiplicity: 639
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,108)\)
- Multiplicity: 770
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,102,115)\)
- Multiplicity: 770
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,101)\)
- Multiplicity: 838
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,108)\)
- Multiplicity: 3447
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,95,115)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,94)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,101)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,108)\)
- Multiplicity: 427
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,115,113)\)
- Multiplicity: 160
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,106)\)
- Multiplicity: 1430
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,108,113)\)
- Multiplicity: 1751
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,115,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,106)\)
- Multiplicity: 2440
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,99)\)
- Multiplicity: 471
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,101,113)\)
- Multiplicity: 971
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,108,118)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,106)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,111)\)
- Multiplicity: 633
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,94,113)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,101,118)\)
- Multiplicity: 95
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,104)\)
- Multiplicity: 1751
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,97)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,111)\)
- Multiplicity: 2906
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,94,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,114,116)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,104)\)
- Multiplicity: 948
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,97)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,111)\)
- Multiplicity: 633
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,107,116)\)
- Multiplicity: 498
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,102)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,109)\)
- Multiplicity: 1525
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,100,116)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,102)\)
- Multiplicity: 1381
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,95)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,109)\)
- Multiplicity: 3048
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,93,116)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,102)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,95)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,107)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,109)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,113,114)\)
- Multiplicity: 292
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,100)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,107)\)
- Multiplicity: 2440
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,106,114)\)
- Multiplicity: 1430
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,93)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,100)\)
- Multiplicity: 633
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,107)\)
- Multiplicity: 1893
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,119,112)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,99,114)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,106,119)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,105)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,112)\)
- Multiplicity: 1022
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,99,119)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,105)\)
- Multiplicity: 2596
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,98)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,112)\)
- Multiplicity: 2311
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,112,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,105)\)
- Multiplicity: 582
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,98)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,110)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,112)\)
- Multiplicity: 254
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,105,117)\)
- Multiplicity: 286
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,103)\)
- Multiplicity: 286
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,110)\)
- Multiplicity: 2250
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,98,117)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,118,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,103)\)
- Multiplicity: 1745
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,96)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,110)\)
- Multiplicity: 2250
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,111,115)\)
- Multiplicity: 369
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,103)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,108)\)
- Multiplicity: 195
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,110)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,104,115)\)
- Multiplicity: 948
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,101)\)
- Multiplicity: 427
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,108)\)
- Multiplicity: 3231
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,97,115)\)
- Multiplicity: 160
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,94)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,101)\)
- Multiplicity: 639
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,108)\)
- Multiplicity: 1221
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,117,113)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,106)\)
- Multiplicity: 552
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,110,113)\)
- Multiplicity: 1259
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,106)\)
- Multiplicity: 3048
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,99)\)
- Multiplicity: 369
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,103,113)\)
- Multiplicity: 1525
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,110,118)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,106)\)
- Multiplicity: 266
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,99)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,111)\)
- Multiplicity: 189
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,96,113)\)
- Multiplicity: 77
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,103,118)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,104)\)
- Multiplicity: 948
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,111)\)
- Multiplicity: 2596
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,96,118)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,116,116)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,104)\)
- Multiplicity: 1751
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,97)\)
- Multiplicity: 175
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,111)\)
- Multiplicity: 1381
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,109,116)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,109)\)
- Multiplicity: 639
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,95,111)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,102,116)\)
- Multiplicity: 498
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,102)\)
- Multiplicity: 1041
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,109)\)
- Multiplicity: 3447
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,95,116)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,102)\)
- Multiplicity: 498
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,95)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,109)\)
- Multiplicity: 639
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,115,114)\)
- Multiplicity: 94
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,107)\)
- Multiplicity: 1357
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,108,114)\)
- Multiplicity: 1221
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,100)\)
- Multiplicity: 704
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,107)\)
- Multiplicity: 2906
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,101,114)\)
- Multiplicity: 838
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,108,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,100)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,107)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,112)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,94,114)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,101,119)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,105)\)
- Multiplicity: 1893
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,98)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,112)\)
- Multiplicity: 2440
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,94,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,114,117)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,105)\)
- Multiplicity: 1430
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,98)\)
- Multiplicity: 254
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,112)\)
- Multiplicity: 704
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,107,117)\)
- Multiplicity: 232
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,103)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,110)\)
- Multiplicity: 1259
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,100,117)\)
- Multiplicity: 195
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,103)\)
- Multiplicity: 1745
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,96)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,106,110)\)
- Multiplicity: 3048
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{39,\lambda}(2,5;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{39,1}(2,5;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{39,\textbf{a}}(2,5;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!