Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(5,0,0) |
(12,1,0) |
(19,1,1) |
(25,3,1) |
(31,4,2) |
(37,4,4) |
(42,7,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(96,47,30) |
(99,47,35) |
(101,52,36) |
(103,56,38) |
(105,59,41) |
(107,61,45) |
(109,62,50) |
(111,62,56) |
(112,69,56) |
(113,75,57) |
(114,80,59) |
(115,84,62) |
(116,87,66) |
(117,89,71) |
(118,90,77) |
(119,90,84) |
(119,97,85) |
(119,103,87) |
(119,108,90) |
(119,112,94) |
(119,115,99) |
(119,117,105) |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(119,119,119) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
1 |
5 |
37 |
75 |
115 |
157 |
198 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
742 |
743 |
741 |
729 |
718 |
698 |
673 |
639 |
608 |
567 |
525 |
477 |
430 |
380 |
331 |
278 |
228 |
179 |
133 |
89 |
45 |
4 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
\(\lambda=(114,112,107)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(115,110,108)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(119,110,104)\)
- Multiplicity: 2
- Dimension: 595
- Dominant: No
\(\lambda=(118,112,103)\)
- Multiplicity: 2
- Dimension: 595
- Dominant: No
\(\lambda=(117,114,102)\)
- Multiplicity: 1
- Dimension: 442
- Dominant: No
\(\lambda=(114,111,108)\)
- Multiplicity: 1
- Dimension: 64
- Dominant: No
\(\lambda=(116,115,102)\)
- Multiplicity: 1
- Dimension: 224
- Dominant: No
\(\lambda=(119,109,105)\)
- Multiplicity: 2
- Dimension: 440
- Dominant: No
\(\lambda=(118,111,104)\)
- Multiplicity: 3
- Dimension: 512
- Dominant: No
\(\lambda=(117,113,103)\)
- Multiplicity: 2
- Dimension: 440
- Dominant: No
\(\lambda=(113,112,108)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(114,110,109)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(116,114,103)\)
- Multiplicity: 1
- Dimension: 270
- Dominant: No
\(\lambda=(119,108,106)\)
- Multiplicity: 1
- Dimension: 270
- Dominant: No
\(\lambda=(118,110,105)\)
- Multiplicity: 2
- Dimension: 405
- Dominant: No
\(\lambda=(117,112,104)\)
- Multiplicity: 2
- Dimension: 405
- Dominant: No
\(\lambda=(113,111,109)\)
- Multiplicity: 1
- Dimension: 27
- Dominant: No
\(\lambda=(116,113,104)\)
- Multiplicity: 1
- Dimension: 280
- Dominant: No
\(\lambda=(118,117,98)\)
- Multiplicity: 1
- Dimension: 440
- Dominant: Yes
\(\lambda=(119,115,99)\)
- Multiplicity: 1
- Dimension: 935
- Dominant: Yes
\(\lambda=(118,109,106)\)
- Multiplicity: 1
- Dimension: 280
- Dominant: No
\(\lambda=(117,111,105)\)
- Multiplicity: 2
- Dimension: 343
- Dominant: No
\(\lambda=(115,114,104)\)
- Multiplicity: 1
- Dimension: 143
- Dominant: No
\(\lambda=(116,112,105)\)
- Multiplicity: 2
- Dimension: 260
- Dominant: No
\(\lambda=(117,110,106)\)
- Multiplicity: 2
- Dimension: 260
- Dominant: No
\(\lambda=(118,116,99)\)
- Multiplicity: 1
- Dimension: 567
- Dominant: No
\(\lambda=(119,114,100)\)
- Multiplicity: 1
- Dimension: 945
- Dominant: No
\(\lambda=(118,108,107)\)
- Multiplicity: 1
- Dimension: 143
- Dominant: No
\(\lambda=(112,111,110)\)
- Multiplicity: 1
- Dimension: 8
- Dominant: No
\(\lambda=(115,113,105)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(116,111,106)\)
- Multiplicity: 2
- Dimension: 216
- Dominant: No
\(\lambda=(117,109,107)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(118,115,100)\)
- Multiplicity: 1
- Dimension: 640
- Dominant: No
\(\lambda=(119,113,101)\)
- Multiplicity: 1
- Dimension: 910
- Dominant: No
\(\lambda=(115,112,106)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(116,110,107)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(118,114,101)\)
- Multiplicity: 2
- Dimension: 665
- Dominant: No
\(\lambda=(119,112,102)\)
- Multiplicity: 2
- Dimension: 836
- Dominant: No
\(\lambda=(117,116,100)\)
- Multiplicity: 1
- Dimension: 323
- Dominant: No
\(\lambda=(114,113,106)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(115,111,107)\)
- Multiplicity: 2
- Dimension: 125
- Dominant: No
\(\lambda=(116,109,108)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(119,111,103)\)
- Multiplicity: 2
- Dimension: 729
- Dominant: No
\(\lambda=(118,113,102)\)
- Multiplicity: 2
- Dimension: 648
- Dominant: No
\(\lambda=(117,115,101)\)
- Multiplicity: 1
- Dimension: 405
- Dominant: No
\(\textbf{a}=(109,106,118)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,117)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,104)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,111)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,112)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,117)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,104)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,110)\)
- Multiplicity: 171
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,111)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,117)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,116)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,103)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,109)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,110)\)
- Multiplicity: 171
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,116)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,115)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,102)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,109)\)
- Multiplicity: 253
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,115)\)
- Multiplicity: 171
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,114)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,108)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,115)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,114)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,108)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,107)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,101)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,107)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,100)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,113)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,114)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,106)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,119,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,112)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,113)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,119)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,118)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,105)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,112)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,118)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,104)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,105)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,111)\)
- Multiplicity: 253
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,112)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,118)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,117)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,104)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,110)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,111)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,117)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,116)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,103)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,109)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,110)\)
- Multiplicity: 221
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,116)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,115)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,102)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,109)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,116)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,115)\)
- Multiplicity: 176
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,108)\)
- Multiplicity: 171
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,109)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,115)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,114)\)
- Multiplicity: 180
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,108)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,107)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,101)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,107)\)
- Multiplicity: 156
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,100)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,113)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,114)\)
- Multiplicity: 110
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,106)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,112)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,113)\)
- Multiplicity: 226
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,119)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,118)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,105)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,112)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,113)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,118)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,105)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,111)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,112)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,118)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,117)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,104)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,110)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,111)\)
- Multiplicity: 156
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,116)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,103)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,110)\)
- Multiplicity: 262
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,116)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,115)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,102)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,109)\)
- Multiplicity: 253
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,116)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,115)\)
- Multiplicity: 171
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,108)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,102)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,109)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,115)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,114)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,108)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,107)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,101)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,107)\)
- Multiplicity: 180
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,100)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,113)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,114)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,106)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,112)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,113)\)
- Multiplicity: 253
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,106)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,105)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,112)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,113)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,118)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,105)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,98)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,111)\)
- Multiplicity: 156
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,112)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,104)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,110)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,111)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,117)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,116)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,103)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,110)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,116)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,109)\)
- Multiplicity: 221
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,110)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,116)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,115)\)
- Multiplicity: 156
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,108)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,102)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,109)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,115)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,114)\)
- Multiplicity: 110
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,108)\)
- Multiplicity: 171
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,101)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,107)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,113)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,114)\)
- Multiplicity: 180
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,106)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,113)\)
- Multiplicity: 262
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,106)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,105)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,115,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,112)\)
- Multiplicity: 226
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,113)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,118)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,105)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,98)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,111)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,112)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,118)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,117)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,104)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,110)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,111)\)
- Multiplicity: 253
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,117)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,116)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,103)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,110)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,116)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,103)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,109)\)
- Multiplicity: 176
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,110)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,116)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,115)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,108)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,102)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,109)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,115)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,114)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,108)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,101)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,107)\)
- Multiplicity: 180
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,113)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,114)\)
- Multiplicity: 207
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,107)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,106)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,113)\)
- Multiplicity: 253
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,114)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,106)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,99)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,112)\)
- Multiplicity: 180
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,113)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,118)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,105)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,111)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,112)\)
- Multiplicity: 180
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,118)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,117)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,104)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,111)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,117)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,116)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,103)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,110)\)
- Multiplicity: 262
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,111)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,117)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,116)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,103)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,109)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,110)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,116)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,115)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,102)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,108)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,109)\)
- Multiplicity: 176
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,115)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,114)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,108)\)
- Multiplicity: 226
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,101)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,107)\)
- Multiplicity: 156
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,113)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,114)\)
- Multiplicity: 221
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,107)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,106)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,113)\)
- Multiplicity: 226
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,114)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,119)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,106)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,99)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,112)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,113)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,118)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,105)\)
- Multiplicity: 110
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,111)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,112)\)
- Multiplicity: 226
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,118)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,117)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,104)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,111)\)
- Multiplicity: 301
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,117)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,116)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,104)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,110)\)
- Multiplicity: 221
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,111)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,117)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,116)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,103)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,109)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,110)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,116)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,115)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,102)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,109)\)
- Multiplicity: 221
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,115)\)
- Multiplicity: 156
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,114)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,108)\)
- Multiplicity: 226
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,101)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,114)\)
- Multiplicity: 221
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,108)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,107)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,107)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,106)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,100)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,113)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,114)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,119)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,106)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,99)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,112)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,113)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,105)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,111)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,112)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{40,\lambda}(2,5;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{40,1}(2,5;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
107 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
108 |
· |
· |
· |
· |
· |
· |
· |
1
| 1
| · |
109 |
· |
· |
· |
· |
· |
1
| 1
| 1
| 2
| · |
110 |
· |
· |
· |
1
| 1
| 1
| 2
| 2
| 2
| · |
111 |
· |
1
| 1
| 1
| 2
| 2
| 2
| 3
| 2
| · |
112 |
· |
· |
1
| 1
| 1
| 2
| 2
| 2
| 2
| · |
113 |
· |
· |
· |
1
| 1
| 1
| 2
| 2
| 1
| · |
114 |
· |
· |
· |
· |
1
| 1
| 1
| 2
| 1
| · |
115 |
· |
· |
· |
· |
· |
1
| 1
| 1
| 1
| · |
116 |
· |
· |
· |
· |
· |
· |
1
| 1
| · |
· |
117 |
· |
· |
· |
· |
· |
· |
· |
1
| · |
· |
118 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{40,\textbf{a}}(2,5;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!