Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
(1,0,0) |
(7,1,0) |
(13,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(17,5,0) |
(23,5,1) |
(28,6,2) |
(33,6,4) |
(37,9,4) |
(41,11,5) |
(45,12,7) |
(49,12,10) |
(52,16,10) |
(55,19,11) |
(58,21,13) |
(61,22,16) |
(64,22,20) |
(66,27,20) |
(68,31,21) |
(70,34,23) |
(72,36,26) |
(74,37,30) |
(76,37,35) |
(77,43,35) |
(78,48,36) |
(79,52,38) |
(80,55,41) |
? |
? |
? |
? |
? |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
(82,77,59) |
(83,77,65) |
(83,80,69) |
(83,82,74) |
(83,83,80) |
\(\lambda=(80,76,76)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(80,80,72)\)
- Multiplicity: 1
- Dimension: 45
- Dominant: No
\(\lambda=(81,78,73)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(82,76,74)\)
- Multiplicity: 2
- Dimension: 105
- Dominant: No
\(\lambda=(83,78,71)\)
- Multiplicity: 1
- Dimension: 336
- Dominant: No
\(\lambda=(82,80,70)\)
- Multiplicity: 2
- Dimension: 231
- Dominant: No
\(\lambda=(81,77,74)\)
- Multiplicity: 1
- Dimension: 90
- Dominant: No
\(\lambda=(83,77,72)\)
- Multiplicity: 1
- Dimension: 273
- Dominant: No
\(\lambda=(82,79,71)\)
- Multiplicity: 1
- Dimension: 234
- Dominant: No
\(\lambda=(80,78,74)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\lambda=(81,76,75)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: No
\(\lambda=(81,80,71)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(83,76,73)\)
- Multiplicity: 1
- Dimension: 192
- Dominant: No
\(\lambda=(83,80,69)\)
- Multiplicity: 1
- Dimension: 384
- Dominant: Yes
\(\lambda=(82,82,68)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: Yes
\(\lambda=(82,78,72)\)
- Multiplicity: 2
- Dimension: 210
- Dominant: No
\(\lambda=(81,79,72)\)
- Multiplicity: 1
- Dimension: 132
- Dominant: No
\(\lambda=(83,75,74)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: No
\(\lambda=(83,79,70)\)
- Multiplicity: 1
- Dimension: 375
- Dominant: No
\(\lambda=(82,81,69)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: No
\(\lambda=(82,77,73)\)
- Multiplicity: 1
- Dimension: 165
- Dominant: No
\(\textbf{a}=(74,76,82)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,80,72)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,82,75)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,74,79)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,69,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,79,81)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,75,75)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,83,71)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,77,78)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,72,81)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,82,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,78,74)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,80,77)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,77,83)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,75,80)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,81,73)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,79,70)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,83,76)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,73,77)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,70,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,80,82)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,82,69)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,76,76)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,78,79)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,73,82)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,79,75)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,77,72)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,81,78)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,71,79)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,76,81)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,82,74)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,80,71)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,74,78)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,69,81)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,79,80)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,75,74)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,83,70)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,77,77)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,74,83)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,72,80)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,82,79)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,78,73)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,80,76)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,77,82)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,81,72)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,83,75)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,73,76)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,75,79)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,70,82)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,80,81)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,76,75)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,82,68)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,78,78)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,73,81)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,83,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,79,74)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,81,77)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,71,78)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,78,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,76,80)\)
- Multiplicity: 62
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,82,73)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,80,70)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,74,77)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,71,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,81,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,69,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,83,69)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,77,76)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,79,79)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,74,82)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,80,75)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,78,72)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,82,78)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,72,79)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,77,81)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,83,74)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,81,71)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,75,78)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,70,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,80,80)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,76,74)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,78,77)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,75,83)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,73,80)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,83,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,79,73)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,81,76)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,78,82)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,80,69)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,82,72)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,74,76)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,76,79)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,71,82)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,81,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,77,75)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,79,78)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,74,81)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,80,74)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,78,71)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,82,77)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,72,78)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,79,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,77,80)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,83,73)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,81,70)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,75,77)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,72,83)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,82,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,70,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,80,79)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,76,73)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,78,76)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,75,82)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,81,75)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,79,72)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,83,78)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,73,79)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,68,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,78,81)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,74,75)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,82,71)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,76,78)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,71,81)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,81,80)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,77,74)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,79,77)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,76,83)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,74,80)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,80,73)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,82,76)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,72,77)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,69,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,79,82)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,81,69)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,83,72)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,75,76)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,77,79)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,72,82)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,82,81)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,78,75)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,80,78)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,70,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,75,81)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,81,74)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,79,71)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,83,77)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,73,78)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,80,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,78,80)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,82,70)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,76,77)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,73,83)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,71,80)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,81,79)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,77,73)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,79,76)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{31,\lambda}(2,1;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{31,2}(2,1;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
79 |
80 |
81 |
82 |
83 |
84 |
74 |
· |
· |
· |
· |
· |
· |
75 |
· |
· |
· |
· |
1
| · |
76 |
· |
1
| 1
| 2
| 1
| · |
77 |
· |
· |
1
| 1
| 1
| · |
78 |
· |
1
| 1
| 2
| 1
| · |
79 |
· |
· |
1
| 1
| 1
| · |
80 |
· |
1
| 1
| 2
| 1
| · |
81 |
· |
· |
· |
1
| · |
· |
82 |
· |
· |
· |
1
| · |
· |
83 |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{31,\textbf{a}}(2,1;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!