Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
(1,0,0) |
(7,1,0) |
(13,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(17,5,0) |
(23,5,1) |
(28,6,2) |
(33,6,4) |
(37,9,4) |
(41,11,5) |
(45,12,7) |
(49,12,10) |
(52,16,10) |
(55,19,11) |
(58,21,13) |
(61,22,16) |
(64,22,20) |
(66,27,20) |
(68,31,21) |
(70,34,23) |
(72,36,26) |
(74,37,30) |
(76,37,35) |
(77,43,35) |
(78,48,36) |
(79,52,38) |
(80,55,41) |
? |
? |
? |
? |
? |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
(82,77,59) |
(83,77,65) |
(83,80,69) |
(83,82,74) |
(83,83,80) |
\(\lambda=(83,80,76)\)
- Multiplicity: 1
- Dimension: 90
- Dominant: No
\(\lambda=(83,81,75)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(83,82,74)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: Yes
\(\textbf{a}=(75,82,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,80,79)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,82,74)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,76,81)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,81,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,83,78)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,81,75)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,79,80)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,75,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,74,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,80,76)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,82,79)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,78,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,83,75)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,79,77)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,81,80)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,77,82)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,76,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,78,78)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,82,76)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,80,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,79,82)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,77,79)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,81,77)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,83,80)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,78,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,80,78)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,76,80)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,82,81)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,81,82)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,79,79)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,83,77)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,75,81)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,80,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,82,78)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,78,80)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,74,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,83,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,83,74)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,81,79)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,77,81)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,82,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,82,75)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,80,80)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,76,82)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,75,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,81,76)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,83,79)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,79,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,78,82)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,80,77)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,82,80)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,77,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,79,78)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,83,76)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,81,81)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,80,82)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,78,79)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,82,77)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,79,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,81,78)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,77,80)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,83,81)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{32,\lambda}(2,1;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{32,2}(2,1;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
82 |
83 |
84 |
79 |
· |
· |
· |
80 |
· |
1
| · |
81 |
· |
1
| · |
82 |
· |
1
| · |
83 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{32,\textbf{a}}(2,1;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!