Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
(3,0,0) |
(9,1,0) |
(15,1,1) |
(20,3,1) |
(25,4,2) |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
? |
? |
? |
? |
? |
(48,18,7) |
(52,18,10) |
(55,21,11) |
(58,23,13) |
(61,24,16) |
(64,24,20) |
(66,29,20) |
(68,33,21) |
(70,36,23) |
(72,38,26) |
(74,39,30) |
(76,39,35) |
(77,45,35) |
(78,50,36) |
(79,54,38) |
(80,57,41) |
(81,59,45) |
(82,60,50) |
(83,60,56) |
(83,66,57) |
(83,71,59) |
(83,75,62) |
(83,78,66) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(82,82,70) |
(83,82,76) |
(83,83,82) |
\(\lambda=(82,76,76)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: No
\(\lambda=(82,82,70)\)
- Multiplicity: 1
- Dimension: 91
- Dominant: Yes
\(\lambda=(82,80,72)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(82,78,74)\)
- Multiplicity: 1
- Dimension: 125
- Dominant: No
\(\textbf{a}=(72,80,82)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,74,81)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,78,79)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,76,76)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,80,74)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,82,77)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,73,82)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,77,80)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,79,75)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,75,77)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,81,78)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,82,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,76,81)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,80,79)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,78,76)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,82,74)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,74,78)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,75,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,79,80)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,81,75)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,77,77)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,73,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,78,81)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,72,80)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,82,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,82,71)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,80,76)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,76,78)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,77,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,71,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,81,80)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,81,72)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,79,77)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,75,79)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,70,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,80,81)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,74,80)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,80,73)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,82,76)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,78,78)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,79,82)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,73,81)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,77,79)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,79,74)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,81,77)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,72,82)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,82,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,76,80)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,78,75)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,82,73)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,80,78)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,81,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,75,81)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,79,79)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,77,76)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,81,74)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,74,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,78,80)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,80,75)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,82,70)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,76,77)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,82,78)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,77,81)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,81,79)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,81,71)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,79,76)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,75,78)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,76,82)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,80,80)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,82,75)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,80,72)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,78,77)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,74,79)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,79,81)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,73,80)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,79,73)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,81,76)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,77,78)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,78,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,72,81)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,82,80)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,76,79)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,82,72)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,78,74)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,80,77)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,71,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,81,81)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,75,80)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,77,75)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,81,73)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,79,78)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{31,\lambda}(2,3;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{31,2}(2,3;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
81 |
82 |
83 |
75 |
· |
· |
· |
76 |
· |
1
| · |
77 |
· |
· |
· |
78 |
· |
1
| · |
79 |
· |
· |
· |
80 |
· |
1
| · |
81 |
· |
· |
· |
82 |
· |
1
| · |
83 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{31,\textbf{a}}(2,3;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
70 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1
| · |
71 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1
| 1
| · |
72 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
2
| 2
| 2
| · |
73 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
2
| 3
| 3
| 2
| · |
74 |
· |
· |
· |
· |
· |
· |
· |
· |
3
| 4
| 5
| 4
| 3
| · |
75 |
· |
· |
· |
· |
· |
· |
· |
3
| 5
| 6
| 6
| 5
| 3
| · |
76 |
· |
· |
· |
· |
· |
· |
4
| 6
| 8
| 8
| 8
| 6
| 4
| · |
77 |
· |
· |
· |
· |
· |
3
| 6
| 8
| 9
| 9
| 8
| 6
| 3
| · |
78 |
· |
· |
· |
· |
3
| 5
| 8
| 9
| 10
| 9
| 8
| 5
| 3
| · |
79 |
· |
· |
· |
2
| 4
| 6
| 8
| 9
| 9
| 8
| 6
| 4
| 2
| · |
80 |
· |
· |
2
| 3
| 5
| 6
| 8
| 8
| 8
| 6
| 5
| 3
| 2
| · |
81 |
· |
1
| 2
| 3
| 4
| 5
| 6
| 6
| 5
| 4
| 3
| 2
| 1
| · |
82 |
1
| 1
| 2
| 2
| 3
| 3
| 4
| 3
| 3
| 2
| 2
| 1
| 1
| · |
83 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |