Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(2,0,0) |
(9,1,0) |
(16,1,1) |
(22,3,1) |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
? |
? |
(38,10,2) |
(44,10,4) |
(49,12,5) |
(54,13,7) |
(59,13,10) |
(63,17,10) |
(67,20,11) |
(71,22,13) |
(75,23,16) |
(79,23,20) |
(82,28,20) |
(85,32,21) |
(88,35,23) |
(91,37,26) |
(94,38,30) |
(97,38,35) |
(99,44,35) |
(101,49,36) |
(103,53,38) |
(105,56,41) |
(107,58,45) |
(109,59,50) |
(111,59,56) |
(112,66,56) |
(113,72,57) |
(114,77,59) |
(115,81,62) |
(116,84,66) |
(117,86,71) |
? |
? |
? |
? |
? |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
(118,113,91) |
(119,113,98) |
(119,116,103) |
(119,118,109) |
(119,119,116) |
\(\lambda=(118,112,100)\)
- Multiplicity: 4
- Dimension: 910
- Dominant: No
\(\lambda=(116,116,98)\)
- Multiplicity: 2
- Dimension: 190
- Dominant: No
\(\lambda=(115,110,105)\)
- Multiplicity: 6
- Dimension: 216
- Dominant: No
\(\lambda=(113,113,104)\)
- Multiplicity: 1
- Dimension: 55
- Dominant: No
\(\lambda=(118,111,101)\)
- Multiplicity: 4
- Dimension: 836
- Dominant: No
\(\lambda=(116,115,99)\)
- Multiplicity: 2
- Dimension: 323
- Dominant: No
\(\lambda=(115,109,106)\)
- Multiplicity: 5
- Dimension: 154
- Dominant: No
\(\lambda=(110,110,110)\)
- Multiplicity: 1
- Dimension: 1
- Dominant: No
\(\lambda=(113,112,105)\)
- Multiplicity: 2
- Dimension: 80
- Dominant: No
\(\lambda=(118,110,102)\)
- Multiplicity: 5
- Dimension: 729
- Dominant: No
\(\lambda=(116,114,100)\)
- Multiplicity: 4
- Dimension: 405
- Dominant: No
\(\lambda=(115,108,107)\)
- Multiplicity: 2
- Dimension: 80
- Dominant: No
\(\lambda=(113,111,106)\)
- Multiplicity: 3
- Dimension: 81
- Dominant: No
\(\lambda=(118,109,103)\)
- Multiplicity: 5
- Dimension: 595
- Dominant: No
\(\lambda=(116,113,101)\)
- Multiplicity: 5
- Dimension: 442
- Dominant: No
\(\lambda=(113,110,107)\)
- Multiplicity: 4
- Dimension: 64
- Dominant: No
\(\lambda=(118,108,104)\)
- Multiplicity: 3
- Dimension: 440
- Dominant: No
\(\lambda=(116,112,102)\)
- Multiplicity: 6
- Dimension: 440
- Dominant: No
\(\lambda=(113,109,108)\)
- Multiplicity: 2
- Dimension: 35
- Dominant: No
\(\lambda=(118,107,105)\)
- Multiplicity: 2
- Dimension: 270
- Dominant: No
\(\lambda=(119,113,98)\)
- Multiplicity: 1
- Dimension: 1288
- Dominant: Yes
\(\lambda=(116,111,103)\)
- Multiplicity: 7
- Dimension: 405
- Dominant: No
\(\lambda=(117,116,97)\)
- Multiplicity: 1
- Dimension: 440
- Dominant: No
\(\lambda=(118,106,106)\)
- Multiplicity: 1
- Dimension: 91
- Dominant: No
\(\lambda=(116,110,104)\)
- Multiplicity: 8
- Dimension: 343
- Dominant: No
\(\lambda=(114,114,102)\)
- Multiplicity: 2
- Dimension: 91
- Dominant: No
\(\lambda=(111,111,108)\)
- Multiplicity: 1
- Dimension: 10
- Dominant: No
\(\lambda=(117,115,98)\)
- Multiplicity: 2
- Dimension: 567
- Dominant: No
\(\lambda=(119,111,100)\)
- Multiplicity: 1
- Dimension: 1134
- Dominant: No
\(\lambda=(116,109,105)\)
- Multiplicity: 5
- Dimension: 260
- Dominant: No
\(\lambda=(114,113,103)\)
- Multiplicity: 2
- Dimension: 143
- Dominant: No
\(\lambda=(111,110,109)\)
- Multiplicity: 1
- Dimension: 8
- Dominant: No
\(\lambda=(117,114,99)\)
- Multiplicity: 3
- Dimension: 640
- Dominant: No
\(\lambda=(119,110,101)\)
- Multiplicity: 1
- Dimension: 1000
- Dominant: No
\(\lambda=(116,108,106)\)
- Multiplicity: 4
- Dimension: 162
- Dominant: No
\(\lambda=(114,112,104)\)
- Multiplicity: 4
- Dimension: 162
- Dominant: No
\(\lambda=(114,111,105)\)
- Multiplicity: 5
- Dimension: 154
- Dominant: No
\(\lambda=(117,113,100)\)
- Multiplicity: 4
- Dimension: 665
- Dominant: No
\(\lambda=(119,109,102)\)
- Multiplicity: 1
- Dimension: 836
- Dominant: No
\(\lambda=(116,107,107)\)
- Multiplicity: 1
- Dimension: 55
- Dominant: No
\(\lambda=(114,110,106)\)
- Multiplicity: 5
- Dimension: 125
- Dominant: No
\(\lambda=(117,112,101)\)
- Multiplicity: 5
- Dimension: 648
- Dominant: No
\(\lambda=(119,108,103)\)
- Multiplicity: 1
- Dimension: 648
- Dominant: No
\(\lambda=(114,109,107)\)
- Multiplicity: 3
- Dimension: 81
- Dominant: No
\(\lambda=(117,111,102)\)
- Multiplicity: 6
- Dimension: 595
- Dominant: No
\(\lambda=(119,107,104)\)
- Multiplicity: 1
- Dimension: 442
- Dominant: No
\(\lambda=(115,115,100)\)
- Multiplicity: 1
- Dimension: 136
- Dominant: No
\(\lambda=(112,112,106)\)
- Multiplicity: 2
- Dimension: 28
- Dominant: No
\(\lambda=(114,108,108)\)
- Multiplicity: 2
- Dimension: 28
- Dominant: No
\(\lambda=(117,110,103)\)
- Multiplicity: 7
- Dimension: 512
- Dominant: No
\(\lambda=(118,116,96)\)
- Multiplicity: 1
- Dimension: 756
- Dominant: Yes
\(\lambda=(115,114,101)\)
- Multiplicity: 2
- Dimension: 224
- Dominant: No
\(\lambda=(112,111,107)\)
- Multiplicity: 2
- Dimension: 35
- Dominant: No
\(\lambda=(118,115,97)\)
- Multiplicity: 2
- Dimension: 874
- Dominant: No
\(\lambda=(117,109,104)\)
- Multiplicity: 6
- Dimension: 405
- Dominant: No
\(\lambda=(115,113,102)\)
- Multiplicity: 3
- Dimension: 270
- Dominant: No
\(\lambda=(112,110,108)\)
- Multiplicity: 3
- Dimension: 27
- Dominant: No
\(\lambda=(118,114,98)\)
- Multiplicity: 2
- Dimension: 935
- Dominant: No
\(\lambda=(117,108,105)\)
- Multiplicity: 4
- Dimension: 280
- Dominant: No
\(\lambda=(115,112,103)\)
- Multiplicity: 5
- Dimension: 280
- Dominant: No
\(\lambda=(112,109,109)\)
- Multiplicity: 1
- Dimension: 10
- Dominant: No
\(\lambda=(118,113,99)\)
- Multiplicity: 3
- Dimension: 945
- Dominant: No
\(\lambda=(117,107,106)\)
- Multiplicity: 2
- Dimension: 143
- Dominant: No
\(\lambda=(115,111,104)\)
- Multiplicity: 5
- Dimension: 260
- Dominant: No
\(\textbf{a}=(118,96,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,106,115)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,114)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,101)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,108)\)
- Multiplicity: 777
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,109)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,115)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,114)\)
- Multiplicity: 522
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,119,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,101)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,107)\)
- Multiplicity: 382
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,108)\)
- Multiplicity: 115
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,114)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,113)\)
- Multiplicity: 450
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,100)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,106)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,107)\)
- Multiplicity: 382
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,109,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,113)\)
- Multiplicity: 450
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,112)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,99)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,106)\)
- Multiplicity: 553
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,102,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,112,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,98,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,112)\)
- Multiplicity: 777
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,111)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,105)\)
- Multiplicity: 405
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,105,118)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,117)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,112)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,105)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,104)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,98)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,111)\)
- Multiplicity: 811
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,98,118)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,117)\)
- Multiplicity: 115
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,118,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,104)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,97)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,110)\)
- Multiplicity: 477
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,111)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,116)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,103)\)
- Multiplicity: 237
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,109)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,110)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,116)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,115)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,102)\)
- Multiplicity: 114
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,109)\)
- Multiplicity: 879
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,115)\)
- Multiplicity: 382
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,114)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,101)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,102)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,108)\)
- Multiplicity: 677
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,109)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,115)\)
- Multiplicity: 60
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,114)\)
- Multiplicity: 477
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,101)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,107)\)
- Multiplicity: 242
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,108)\)
- Multiplicity: 236
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,114)\)
- Multiplicity: 237
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,113)\)
- Multiplicity: 341
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,100)\)
- Multiplicity: 60
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,106)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,107)\)
- Multiplicity: 522
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,110,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,113)\)
- Multiplicity: 553
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,112)\)
- Multiplicity: 114
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,99)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,106)\)
- Multiplicity: 581
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,103,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,113,118)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,112)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,111)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,106)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,105)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,106,118)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,112)\)
- Multiplicity: 114
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,105)\)
- Multiplicity: 115
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,104)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,98)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,111)\)
- Multiplicity: 695
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,99,118)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,117)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,104)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,97)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,110)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,111)\)
- Multiplicity: 405
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,117)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,116)\)
- Multiplicity: 114
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,103)\)
- Multiplicity: 237
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,109)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,110)\)
- Multiplicity: 777
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,116)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,115)\)
- Multiplicity: 60
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,102)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,109)\)
- Multiplicity: 879
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,110)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,116)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,115)\)
- Multiplicity: 382
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,114)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,102)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,108)\)
- Multiplicity: 538
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,109)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,115)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,114)\)
- Multiplicity: 405
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,101)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,107)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,108)\)
- Multiplicity: 382
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,114)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,113)\)
- Multiplicity: 237
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,100)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,107)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,111,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,113)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,112)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,106)\)
- Multiplicity: 553
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,104,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,114,118)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,113)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,112)\)
- Multiplicity: 777
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,106)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,105)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,107,118)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,117,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,112)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,105)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,104)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,98)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,111)\)
- Multiplicity: 553
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,100,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,117)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,104)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,97)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,110)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,111)\)
- Multiplicity: 553
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,117)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,116)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,103)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,109)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,110)\)
- Multiplicity: 879
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,96,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,116)\)
- Multiplicity: 236
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,115)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,103)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,102)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,109)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,110)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,116)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,115)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,102)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,108)\)
- Multiplicity: 382
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,109)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,115)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,114)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,101)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,107)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,108)\)
- Multiplicity: 538
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,114)\)
- Multiplicity: 405
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,113)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,100)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,107)\)
- Multiplicity: 695
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,112,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,114)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,113)\)
- Multiplicity: 677
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,112)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,106)\)
- Multiplicity: 477
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,107)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,105,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,115,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,113)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,112)\)
- Multiplicity: 695
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,106)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,105)\)
- Multiplicity: 115
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,99)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,98,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,108,118)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,112)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,105)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,98)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,111)\)
- Multiplicity: 405
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,101,118)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,117)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,104)\)
- Multiplicity: 341
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,110)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,111)\)
- Multiplicity: 695
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,117)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,116)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,103)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,110)\)
- Multiplicity: 920
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,111)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,116)\)
- Multiplicity: 242
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,115)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,103)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,102)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,109)\)
- Multiplicity: 677
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,110)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,116)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,115)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,102)\)
- Multiplicity: 114
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,108)\)
- Multiplicity: 236
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,109)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,115)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,114)\)
- Multiplicity: 237
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,101)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,107)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,108)\)
- Multiplicity: 677
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,114)\)
- Multiplicity: 477
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,113)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,100)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,107)\)
- Multiplicity: 695
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,113,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,114)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,113)\)
- Multiplicity: 677
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,112)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,106)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,107)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,106,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,116,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,113)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,112)\)
- Multiplicity: 581
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,106)\)
- Multiplicity: 236
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,105)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,99)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,99,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,109,118)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,112)\)
- Multiplicity: 450
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,105)\)
- Multiplicity: 405
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,98)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,111)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,102,118)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,104)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,110)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,111)\)
- Multiplicity: 811
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,117)\)
- Multiplicity: 115
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,116)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,104)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,103)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,110)\)
- Multiplicity: 879
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,111)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,117)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,116)\)
- Multiplicity: 236
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,115)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,103)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,96)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,109)\)
- Multiplicity: 522
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,110)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,116)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,115)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,102)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,108)\)
- Multiplicity: 115
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,109)\)
- Multiplicity: 522
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,115)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,114)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,101)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,108)\)
- Multiplicity: 777
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,115)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,114)\)
- Multiplicity: 522
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,113)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,107)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,108)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,114)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,113)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,100)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,106)\)
- Multiplicity: 236
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,107)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,107,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,113)\)
- Multiplicity: 237
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,112)\)
- Multiplicity: 450
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,106)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,105)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,99)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,100,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,110,118)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,112)\)
- Multiplicity: 581
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,111)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,105)\)
- Multiplicity: 450
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,98)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,103,118)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,117)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,112)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,104)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,110)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,111)\)
- Multiplicity: 879
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,96,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,117)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,116)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,104)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,103)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,110)\)
- Multiplicity: 777
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,111)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,117)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,116)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,103)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,96)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,109)\)
- Multiplicity: 362
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,110)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,116)\)
- Multiplicity: 114
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,115)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,102)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,108)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,109)\)
- Multiplicity: 677
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,115)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,114)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,101)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,108)\)
- Multiplicity: 811
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,115)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,114)\)
- Multiplicity: 538
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,101)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,107)\)
- Multiplicity: 522
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,108)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,114)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,113)\)
- Multiplicity: 553
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,100)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,106)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,107)\)
- Multiplicity: 242
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,108,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,113)\)
- Multiplicity: 341
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,112)\)
- Multiplicity: 322
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,99)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,106)\)
- Multiplicity: 477
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,101,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,111,118)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,112)\)
- Multiplicity: 695
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,111)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,105)\)
- Multiplicity: 450
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,98)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,104,118)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,117)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,112)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,105)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,104)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,111)\)
- Multiplicity: 879
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,97,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,117)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,104)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,103)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,97)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,110)\)
- Multiplicity: 634
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,111)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,117)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,116)\)
- Multiplicity: 190
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,103)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,96)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,109)\)
- Multiplicity: 218
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,110)\)
- Multiplicity: 477
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,116)\)
- Multiplicity: 152
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,115)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,102)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,108)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,109)\)
- Multiplicity: 805
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{39,\lambda}(2,2;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{39,2}(2,2;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
105 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
106 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1
| · |
· |
107 |
· |
· |
· |
· |
· |
· |
· |
1
| 2
| 2
| 1
| · |
108 |
· |
· |
· |
· |
· |
2
| 2
| 4
| 4
| 3
| 1
| · |
109 |
· |
· |
· |
1
| 2
| 3
| 5
| 5
| 6
| 5
| 1
| · |
110 |
· |
1
| 1
| 3
| 4
| 5
| 6
| 8
| 7
| 5
| 1
| · |
111 |
· |
· |
1
| 2
| 3
| 5
| 5
| 7
| 6
| 4
| 1
| · |
112 |
· |
· |
· |
2
| 2
| 4
| 5
| 6
| 5
| 4
| · |
· |
113 |
· |
· |
· |
· |
1
| 2
| 3
| 5
| 4
| 3
| 1
| · |
114 |
· |
· |
· |
· |
· |
2
| 2
| 4
| 3
| 2
| · |
· |
115 |
· |
· |
· |
· |
· |
· |
1
| 2
| 2
| 2
| · |
· |
116 |
· |
· |
· |
· |
· |
· |
· |
2
| 1
| 1
| · |
· |
117 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{39,\textbf{a}}(2,2;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!