Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(4,0,0) |
(11,1,0) |
(18,1,1) |
(24,3,1) |
(30,4,2) |
(36,4,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(78,30,16) |
(82,30,20) |
(85,34,21) |
(88,37,23) |
(91,39,26) |
(94,40,30) |
(97,40,35) |
(99,46,35) |
(101,51,36) |
(103,55,38) |
(105,58,41) |
(107,60,45) |
(109,61,50) |
(111,61,56) |
(112,68,56) |
(113,74,57) |
(114,79,59) |
(115,83,62) |
(116,86,66) |
(117,88,71) |
(118,89,77) |
(119,89,84) |
(119,96,85) |
(119,102,87) |
(119,107,90) |
(119,111,94) |
(119,114,99) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(118,118,104) |
(119,118,111) |
(119,119,118) |
\(\lambda=(112,107,105)\)
- Multiplicity: 2
- Dimension: 81
- Dominant: No
\(\lambda=(115,109,100)\)
- Multiplicity: 6
- Dimension: 595
- Dominant: No
\(\lambda=(118,111,95)\)
- Multiplicity: 2
- Dimension: 1700
- Dominant: No
\(\lambda=(117,105,102)\)
- Multiplicity: 4
- Dimension: 442
- Dominant: No
\(\lambda=(110,110,104)\)
- Multiplicity: 3
- Dimension: 28
- Dominant: No
\(\lambda=(112,106,106)\)
- Multiplicity: 2
- Dimension: 28
- Dominant: No
\(\lambda=(113,112,99)\)
- Multiplicity: 2
- Dimension: 224
- Dominant: No
\(\lambda=(115,108,101)\)
- Multiplicity: 7
- Dimension: 512
- Dominant: No
\(\lambda=(118,110,96)\)
- Multiplicity: 4
- Dimension: 1620
- Dominant: No
\(\lambda=(117,104,103)\)
- Multiplicity: 2
- Dimension: 224
- Dominant: No
\(\lambda=(116,114,94)\)
- Multiplicity: 2
- Dimension: 756
- Dominant: No
\(\lambda=(110,109,105)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(113,111,100)\)
- Multiplicity: 3
- Dimension: 270
- Dominant: No
\(\lambda=(115,107,102)\)
- Multiplicity: 6
- Dimension: 405
- Dominant: No
\(\lambda=(118,109,97)\)
- Multiplicity: 4
- Dimension: 1495
- Dominant: No
\(\lambda=(116,113,95)\)
- Multiplicity: 2
- Dimension: 874
- Dominant: No
\(\lambda=(110,108,106)\)
- Multiplicity: 2
- Dimension: 27
- Dominant: No
\(\lambda=(113,110,101)\)
- Multiplicity: 6
- Dimension: 280
- Dominant: No
\(\lambda=(115,106,103)\)
- Multiplicity: 5
- Dimension: 280
- Dominant: No
\(\lambda=(118,108,98)\)
- Multiplicity: 5
- Dimension: 1331
- Dominant: No
\(\lambda=(116,112,96)\)
- Multiplicity: 4
- Dimension: 935
- Dominant: No
\(\lambda=(113,109,102)\)
- Multiplicity: 5
- Dimension: 260
- Dominant: No
\(\lambda=(115,105,104)\)
- Multiplicity: 2
- Dimension: 143
- Dominant: No
\(\lambda=(118,107,99)\)
- Multiplicity: 4
- Dimension: 1134
- Dominant: No
\(\lambda=(116,111,97)\)
- Multiplicity: 4
- Dimension: 945
- Dominant: No
\(\lambda=(113,108,103)\)
- Multiplicity: 6
- Dimension: 216
- Dominant: No
\(\lambda=(114,114,96)\)
- Multiplicity: 2
- Dimension: 190
- Dominant: No
\(\lambda=(118,106,100)\)
- Multiplicity: 5
- Dimension: 910
- Dominant: No
\(\lambda=(116,110,98)\)
- Multiplicity: 7
- Dimension: 910
- Dominant: No
\(\lambda=(111,111,102)\)
- Multiplicity: 1
- Dimension: 55
- Dominant: No
\(\lambda=(113,107,104)\)
- Multiplicity: 4
- Dimension: 154
- Dominant: No
\(\lambda=(114,113,97)\)
- Multiplicity: 2
- Dimension: 323
- Dominant: No
\(\lambda=(118,105,101)\)
- Multiplicity: 3
- Dimension: 665
- Dominant: No
\(\lambda=(119,111,94)\)
- Multiplicity: 1
- Dimension: 2187
- Dominant: Yes
\(\lambda=(116,109,99)\)
- Multiplicity: 6
- Dimension: 836
- Dominant: No
\(\lambda=(108,108,108)\)
- Multiplicity: 1
- Dimension: 1
- Dominant: No
\(\lambda=(111,110,103)\)
- Multiplicity: 3
- Dimension: 80
- Dominant: No
\(\lambda=(113,106,105)\)
- Multiplicity: 2
- Dimension: 80
- Dominant: No
\(\lambda=(114,112,98)\)
- Multiplicity: 4
- Dimension: 405
- Dominant: No
\(\lambda=(117,114,93)\)
- Multiplicity: 1
- Dimension: 1144
- Dominant: No
\(\lambda=(118,104,102)\)
- Multiplicity: 3
- Dimension: 405
- Dominant: No
\(\lambda=(119,110,95)\)
- Multiplicity: 1
- Dimension: 2080
- Dominant: No
\(\lambda=(116,108,100)\)
- Multiplicity: 8
- Dimension: 729
- Dominant: No
\(\lambda=(111,109,104)\)
- Multiplicity: 2
- Dimension: 81
- Dominant: No
\(\lambda=(114,111,99)\)
- Multiplicity: 5
- Dimension: 442
- Dominant: No
\(\lambda=(117,113,94)\)
- Multiplicity: 1
- Dimension: 1250
- Dominant: No
\(\lambda=(119,109,96)\)
- Multiplicity: 1
- Dimension: 1925
- Dominant: No
\(\lambda=(116,107,101)\)
- Multiplicity: 6
- Dimension: 595
- Dominant: No
\(\lambda=(111,108,105)\)
- Multiplicity: 3
- Dimension: 64
- Dominant: No
\(\lambda=(114,110,100)\)
- Multiplicity: 7
- Dimension: 440
- Dominant: No
\(\lambda=(117,112,95)\)
- Multiplicity: 2
- Dimension: 1296
- Dominant: No
\(\lambda=(119,108,97)\)
- Multiplicity: 2
- Dimension: 1728
- Dominant: No
\(\lambda=(116,106,102)\)
- Multiplicity: 6
- Dimension: 440
- Dominant: No
\(\lambda=(111,107,106)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(114,109,101)\)
- Multiplicity: 7
- Dimension: 405
- Dominant: No
\(\lambda=(117,111,96)\)
- Multiplicity: 3
- Dimension: 1288
- Dominant: No
\(\lambda=(119,107,98)\)
- Multiplicity: 3
- Dimension: 1495
- Dominant: No
\(\lambda=(116,105,103)\)
- Multiplicity: 3
- Dimension: 270
- Dominant: No
\(\lambda=(112,112,100)\)
- Multiplicity: 3
- Dimension: 91
- Dominant: No
\(\lambda=(114,108,102)\)
- Multiplicity: 8
- Dimension: 343
- Dominant: No
\(\lambda=(119,106,99)\)
- Multiplicity: 2
- Dimension: 1232
- Dominant: No
\(\lambda=(117,110,97)\)
- Multiplicity: 4
- Dimension: 1232
- Dominant: No
\(\lambda=(116,104,104)\)
- Multiplicity: 3
- Dimension: 91
- Dominant: No
\(\lambda=(115,114,95)\)
- Multiplicity: 1
- Dimension: 440
- Dominant: No
\(\lambda=(112,111,101)\)
- Multiplicity: 3
- Dimension: 143
- Dominant: No
\(\lambda=(114,107,103)\)
- Multiplicity: 5
- Dimension: 260
- Dominant: No
\(\lambda=(119,105,100)\)
- Multiplicity: 2
- Dimension: 945
- Dominant: No
\(\lambda=(117,109,98)\)
- Multiplicity: 5
- Dimension: 1134
- Dominant: No
\(\lambda=(115,113,96)\)
- Multiplicity: 1
- Dimension: 567
- Dominant: No
\(\lambda=(112,110,102)\)
- Multiplicity: 6
- Dimension: 162
- Dominant: No
\(\lambda=(114,106,104)\)
- Multiplicity: 5
- Dimension: 162
- Dominant: No
\(\lambda=(119,104,101)\)
- Multiplicity: 2
- Dimension: 640
- Dominant: No
\(\lambda=(118,114,92)\)
- Multiplicity: 1
- Dimension: 1610
- Dominant: Yes
\(\lambda=(117,108,99)\)
- Multiplicity: 6
- Dimension: 1000
- Dominant: No
\(\lambda=(115,112,97)\)
- Multiplicity: 3
- Dimension: 640
- Dominant: No
\(\lambda=(112,109,103)\)
- Multiplicity: 5
- Dimension: 154
- Dominant: No
\(\lambda=(114,105,105)\)
- Multiplicity: 1
- Dimension: 55
- Dominant: No
\(\lambda=(119,103,102)\)
- Multiplicity: 1
- Dimension: 323
- Dominant: No
\(\lambda=(118,113,93)\)
- Multiplicity: 1
- Dimension: 1701
- Dominant: No
\(\lambda=(117,107,100)\)
- Multiplicity: 5
- Dimension: 836
- Dominant: No
\(\lambda=(115,111,98)\)
- Multiplicity: 4
- Dimension: 665
- Dominant: No
\(\lambda=(112,108,104)\)
- Multiplicity: 6
- Dimension: 125
- Dominant: No
\(\lambda=(118,112,94)\)
- Multiplicity: 2
- Dimension: 1729
- Dominant: No
\(\lambda=(117,106,101)\)
- Multiplicity: 5
- Dimension: 648
- Dominant: No
\(\lambda=(116,116,92)\)
- Multiplicity: 1
- Dimension: 325
- Dominant: No
\(\lambda=(115,110,99)\)
- Multiplicity: 6
- Dimension: 648
- Dominant: No
\(\textbf{a}=(115,93,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,113,114)\)
- Multiplicity: 107
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,102)\)
- Multiplicity: 142
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,95)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,119,107)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,109)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,106,114)\)
- Multiplicity: 655
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,100)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,107)\)
- Multiplicity: 1098
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,99,114)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,93)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,100)\)
- Multiplicity: 390
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,107)\)
- Multiplicity: 1098
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,106,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,105)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,98,107)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,112,112)\)
- Multiplicity: 410
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,92,114)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,99,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,105)\)
- Multiplicity: 1260
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,98)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,105,112)\)
- Multiplicity: 1098
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,112,117)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,105)\)
- Multiplicity: 456
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,98)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,118,110)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,98,112)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,105,117)\)
- Multiplicity: 142
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,103)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,110)\)
- Multiplicity: 955
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,98,117)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,103)\)
- Multiplicity: 955
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,96)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,110)\)
- Multiplicity: 1176
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,111,115)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,103)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,96)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,108)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,110)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,104,115)\)
- Multiplicity: 456
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,101)\)
- Multiplicity: 225
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,108)\)
- Multiplicity: 1470
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,97,115)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,101)\)
- Multiplicity: 438
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,94)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,108)\)
- Multiplicity: 760
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,117,113)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,106)\)
- Multiplicity: 258
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,110,113)\)
- Multiplicity: 519
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,99)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,106)\)
- Multiplicity: 1512
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,103,113)\)
- Multiplicity: 760
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,110,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,106)\)
- Multiplicity: 258
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,99)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,111)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,96,113)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,103,118)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,104)\)
- Multiplicity: 456
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,111)\)
- Multiplicity: 1129
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,96,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,116,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,104)\)
- Multiplicity: 1018
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,97)\)
- Multiplicity: 107
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,111)\)
- Multiplicity: 758
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,109,116)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,104)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,109)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,95,111)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,102,116)\)
- Multiplicity: 258
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,102)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,109)\)
- Multiplicity: 1601
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,95,116)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,115,114)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,102)\)
- Multiplicity: 389
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,95)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,109)\)
- Multiplicity: 438
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,108,114)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,107)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,101,114)\)
- Multiplicity: 438
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,100)\)
- Multiplicity: 390
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,107)\)
- Multiplicity: 1506
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,108,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,100)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,107)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,114,112)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,94,114)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,101,119)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,105)\)
- Multiplicity: 890
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,98)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,107,112)\)
- Multiplicity: 1098
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,94,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,114,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,105)\)
- Multiplicity: 890
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,98)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,100,112)\)
- Multiplicity: 410
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,107,117)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,103)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,110)\)
- Multiplicity: 519
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,100,117)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,103)\)
- Multiplicity: 885
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,96)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,110)\)
- Multiplicity: 1470
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,93,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,113,115)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,103)\)
- Multiplicity: 278
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,96)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,119,108)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,110)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,106,115)\)
- Multiplicity: 432
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,101)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,108)\)
- Multiplicity: 1018
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,99,115)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,101)\)
- Multiplicity: 564
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,94)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,108)\)
- Multiplicity: 1260
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,92,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,101)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,106)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,108)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,112,113)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,99)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,106)\)
- Multiplicity: 1328
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,105,113)\)
- Multiplicity: 890
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,112,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,106)\)
- Multiplicity: 655
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,92)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,99)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,118,111)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,98,113)\)
- Multiplicity: 179
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,105,118)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,104)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,111)\)
- Multiplicity: 758
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,98,118)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,104)\)
- Multiplicity: 1176
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,97)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,111)\)
- Multiplicity: 1129
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,111,116)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,104)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,97)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,109)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,111)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,104,116)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,102)\)
- Multiplicity: 258
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,109)\)
- Multiplicity: 1349
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,97,116)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,117,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,102)\)
- Multiplicity: 646
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,95)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,109)\)
- Multiplicity: 885
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,110,114)\)
- Multiplicity: 344
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,107)\)
- Multiplicity: 225
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,96,109)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,103,114)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,100)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,107)\)
- Multiplicity: 1601
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,110,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,93)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,100)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,107)\)
- Multiplicity: 389
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,116,112)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,96,114)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,103,119)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,105)\)
- Multiplicity: 456
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,109,112)\)
- Multiplicity: 885
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,96,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,105)\)
- Multiplicity: 1260
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,98)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,102,112)\)
- Multiplicity: 732
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,109,117)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,105)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,98)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,110)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,95,112)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,102,117)\)
- Multiplicity: 142
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,103)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,110)\)
- Multiplicity: 1470
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,95,117)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,115,115)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,103)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,96)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,110)\)
- Multiplicity: 519
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,108,115)\)
- Multiplicity: 332
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,108)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,101,115)\)
- Multiplicity: 332
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,101)\)
- Multiplicity: 519
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,94)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,108)\)
- Multiplicity: 1601
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,94,115)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,101)\)
- Multiplicity: 127
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,94)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,108)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,114,113)\)
- Multiplicity: 107
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,99)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,106)\)
- Multiplicity: 890
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,107,113)\)
- Multiplicity: 845
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,114,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,99)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,106)\)
- Multiplicity: 1130
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,100,113)\)
- Multiplicity: 390
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,107,118)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,106)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,104)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,111)\)
- Multiplicity: 390
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,93,113)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,100,118)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,104)\)
- Multiplicity: 1018
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,97)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,111)\)
- Multiplicity: 1328
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,93,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,113,116)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,104)\)
- Multiplicity: 456
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,97)\)
- Multiplicity: 72
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,119,109)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,111)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,106,116)\)
- Multiplicity: 258
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,102)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,109)\)
- Multiplicity: 885
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,99,116)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,102)\)
- Multiplicity: 758
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,95)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,109)\)
- Multiplicity: 1349
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,92,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,112,114)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,102)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,95)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,107)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,109)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,105,114)\)
- Multiplicity: 670
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,100)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,107)\)
- Multiplicity: 1328
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,93)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,100)\)
- Multiplicity: 344
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,107)\)
- Multiplicity: 845
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,118,112)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,98,114)\)
- Multiplicity: 172
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,105,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,105)\)
- Multiplicity: 142
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,111,112)\)
- Multiplicity: 564
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,98,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,105)\)
- Multiplicity: 1349
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,98)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,104,112)\)
- Multiplicity: 1018
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,111,117)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,105)\)
- Multiplicity: 278
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,98)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,110)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,97,112)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,104,117)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,103)\)
- Multiplicity: 278
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,110)\)
- Multiplicity: 1176
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,97,117)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,117,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,103)\)
- Multiplicity: 885
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,96)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,110)\)
- Multiplicity: 955
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,110,115)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,103)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,108)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,96,110)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,103,115)\)
- Multiplicity: 432
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,101)\)
- Multiplicity: 332
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,108)\)
- Multiplicity: 1601
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,96,115)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,101)\)
- Multiplicity: 332
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,94)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,108)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,116,113)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,106)\)
- Multiplicity: 432
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,109,113)\)
- Multiplicity: 646
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,99)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,106)\)
- Multiplicity: 1470
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,102,113)\)
- Multiplicity: 646
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,109,118)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,106)\)
- Multiplicity: 127
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,99)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,111)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,95,113)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,102,118)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,104)\)
- Multiplicity: 655
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,111)\)
- Multiplicity: 1260
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,95,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,115,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,104)\)
- Multiplicity: 845
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,97)\)
- Multiplicity: 107
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,111)\)
- Multiplicity: 564
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,108,116)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,109)\)
- Multiplicity: 438
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,94,111)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,101,116)\)
- Multiplicity: 225
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,102)\)
- Multiplicity: 646
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,95)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,109)\)
- Multiplicity: 1601
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,94,116)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,114,114)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,102)\)
- Multiplicity: 258
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,95)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,109)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,107,114)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,100)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,107)\)
- Multiplicity: 845
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,100,114)\)
- Multiplicity: 344
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,93)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,100)\)
- Multiplicity: 410
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,107)\)
- Multiplicity: 1328
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,107,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,105)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,100)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,107)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,113,112)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,93,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,100,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,105)\)
- Multiplicity: 1098
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,98)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,106,112)\)
- Multiplicity: 1130
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,113,117)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,105)\)
- Multiplicity: 670
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,98)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,119,110)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,99,112)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,106,117)\)
- Multiplicity: 127
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,103)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,110)\)
- Multiplicity: 732
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,99,117)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,103)\)
- Multiplicity: 955
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,96)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,110)\)
- Multiplicity: 1349
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,92,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,112,115)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,103)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,96)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,108)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,110)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,105,115)\)
- Multiplicity: 456
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,101)\)
- Multiplicity: 127
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,108)\)
- Multiplicity: 1260
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,98,115)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,101)\)
- Multiplicity: 519
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,94)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,108)\)
- Multiplicity: 1018
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,118,113)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,106)\)
- Multiplicity: 127
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,97,108)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,111,113)\)
- Multiplicity: 390
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,99)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,106)\)
- Multiplicity: 1470
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,104,113)\)
- Multiplicity: 845
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,111,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,106)\)
- Multiplicity: 432
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,99)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,117,111)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,97,113)\)
- Multiplicity: 107
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,104,118)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,104)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,111)\)
- Multiplicity: 955
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,97,118)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,104)\)
- Multiplicity: 1129
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,97)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,111)\)
- Multiplicity: 955
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,110,116)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,104)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,97)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,109)\)
- Multiplicity: 146
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,96,111)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,103,116)\)
- Multiplicity: 278
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,102)\)
- Multiplicity: 389
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,109)\)
- Multiplicity: 1512
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,96,116)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,116,114)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,102)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,95)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,109)\)
- Multiplicity: 646
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,109,114)\)
- Multiplicity: 438
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,107)\)
- Multiplicity: 389
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,102,114)\)
- Multiplicity: 531
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,100)\)
- Multiplicity: 344
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,107)\)
- Multiplicity: 1601
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,109,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,93)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,100)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,107)\)
- Multiplicity: 225
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,115,112)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,95,114)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,102,119)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,105)\)
- Multiplicity: 670
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,108,112)\)
- Multiplicity: 1018
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,95,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,115,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,105)\)
- Multiplicity: 1098
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,98)\)
- Multiplicity: 179
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,101,112)\)
- Multiplicity: 564
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,108,117)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,105)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,110)\)
- Multiplicity: 344
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,94,112)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,101,117)\)
- Multiplicity: 127
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,103)\)
- Multiplicity: 760
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,96)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,110)\)
- Multiplicity: 1506
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,94,117)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,114,115)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,103)\)
- Multiplicity: 432
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,96)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,110)\)
- Multiplicity: 344
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,107,115)\)
- Multiplicity: 389
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,101)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,108)\)
- Multiplicity: 760
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,100,115)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,101)\)
- Multiplicity: 564
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,94)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,108)\)
- Multiplicity: 1470
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,93,115)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,101)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,94)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,106)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,108)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,113,113)\)
- Multiplicity: 179
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,99)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,106)\)
- Multiplicity: 1130
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,106,113)\)
- Multiplicity: 890
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,113,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,106)\)
- Multiplicity: 890
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,99)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,119,111)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,99,113)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,106,118)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,104)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,111)\)
- Multiplicity: 564
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,99,118)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,104)\)
- Multiplicity: 1129
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,97)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,111)\)
- Multiplicity: 1260
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,92,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,112,116)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,104)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,97)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,109)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,111)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,105,116)\)
- Multiplicity: 278
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,102)\)
- Multiplicity: 142
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,109)\)
- Multiplicity: 1129
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,98,116)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,118,114)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,102)\)
- Multiplicity: 732
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,95)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,109)\)
- Multiplicity: 1129
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,111,114)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,102)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,107)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,109)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,104,114)\)
- Multiplicity: 655
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,100)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,107)\)
- Multiplicity: 1506
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,111,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,93)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,100)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,107)\)
- Multiplicity: 603
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,117,112)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,97,114)\)
- Multiplicity: 107
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,104,119)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,105)\)
- Multiplicity: 278
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,110,112)\)
- Multiplicity: 732
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,97,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,105)\)
- Multiplicity: 1349
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,98)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,103,112)\)
- Multiplicity: 885
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,110,117)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,105)\)
- Multiplicity: 142
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,98)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,110)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,96,112)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,103,117)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,103)\)
- Multiplicity: 432
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,110)\)
- Multiplicity: 1349
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,96,117)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,116,115)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,103)\)
- Multiplicity: 760
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,96)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,110)\)
- Multiplicity: 732
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,109,115)\)
- Multiplicity: 267
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,108)\)
- Multiplicity: 332
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,95,110)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,102,115)\)
- Multiplicity: 389
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,101)\)
- Multiplicity: 438
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,108)\)
- Multiplicity: 1655
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,95,115)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,101)\)
- Multiplicity: 225
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,94)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,108)\)
- Multiplicity: 332
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,115,113)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,106)\)
- Multiplicity: 655
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,108,113)\)
- Multiplicity: 760
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,99)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,106)\)
- Multiplicity: 1328
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,101,113)\)
- Multiplicity: 519
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,108,118)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,106)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,99)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,111)\)
- Multiplicity: 251
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,94,113)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,101,118)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,104)\)
- Multiplicity: 845
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,97)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,111)\)
- Multiplicity: 1328
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,94,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,114,116)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,104)\)
- Multiplicity: 655
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,97)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,111)\)
- Multiplicity: 390
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,107,116)\)
- Multiplicity: 225
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,102)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,109)\)
- Multiplicity: 646
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,100,116)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,102)\)
- Multiplicity: 732
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,95)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,106,109)\)
- Multiplicity: 1512
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{39,\lambda}(2,4;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{39,1}(2,4;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
102 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
103 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1
| · |
104 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
3
| 2
| 3
| 2
| · |
105 |
· |
· |
· |
· |
· |
· |
· |
1
| 2
| 3
| 4
| 3
| 2
| · |
106 |
· |
· |
· |
· |
· |
2
| 2
| 5
| 5
| 6
| 5
| 5
| 2
| · |
107 |
· |
· |
· |
· |
1
| 2
| 4
| 5
| 6
| 6
| 5
| 4
| 3
| · |
108 |
· |
1
| · |
2
| 3
| 6
| 6
| 8
| 7
| 8
| 6
| 5
| 2
| · |
109 |
· |
· |
· |
1
| 2
| 5
| 5
| 7
| 6
| 6
| 5
| 4
| 1
| · |
110 |
· |
· |
· |
3
| 3
| 6
| 6
| 7
| 6
| 7
| 4
| 4
| 1
| · |
111 |
· |
· |
· |
· |
1
| 3
| 3
| 5
| 4
| 4
| 3
| 2
| 1
| · |
112 |
· |
· |
· |
· |
· |
3
| 2
| 4
| 3
| 4
| 2
| 2
| · |
· |
113 |
· |
· |
· |
· |
· |
· |
· |
2
| 1
| 2
| 1
| 1
| · |
· |
114 |
· |
· |
· |
· |
· |
· |
· |
2
| 1
| 2
| 1
| 1
| · |
· |
115 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
116 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1
| · |
· |
· |
· |
117 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{39,\textbf{a}}(2,4;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!