Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(4,0,0) |
(11,1,0) |
(18,1,1) |
(24,3,1) |
(30,4,2) |
(36,4,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(78,30,16) |
(82,30,20) |
(85,34,21) |
(88,37,23) |
(91,39,26) |
(94,40,30) |
(97,40,35) |
(99,46,35) |
(101,51,36) |
(103,55,38) |
(105,58,41) |
(107,60,45) |
(109,61,50) |
(111,61,56) |
(112,68,56) |
(113,74,57) |
(114,79,59) |
(115,83,62) |
(116,86,66) |
(117,88,71) |
(118,89,77) |
(119,89,84) |
(119,96,85) |
(119,102,87) |
(119,107,90) |
(119,111,94) |
(119,114,99) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(118,118,104) |
(119,118,111) |
(119,119,118) |
\(\lambda=(118,112,110)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(118,118,104)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: Yes
\(\lambda=(118,116,106)\)
- Multiplicity: 1
- Dimension: 231
- Dominant: No
\(\lambda=(118,114,108)\)
- Multiplicity: 1
- Dimension: 210
- Dominant: No
\(\textbf{a}=(113,115,112)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,109)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,115)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,116)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,111)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,108)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,115)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,111)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,114)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,110)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,113)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,113)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,109)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,116)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,112)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,105)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,115)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,111)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,114)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,117)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,107)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,114)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,113)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,116)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,112)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,109)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,108)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,115)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,111)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,118,104)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,114)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,110)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,113)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,113)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,106)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,109)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,116)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,112)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,115)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,111)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,108)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,115)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,117)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,107)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,114)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,113)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,112)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,109)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,116)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,112)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,108)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,115)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,111)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,114)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,117)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,110)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,113)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,113)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,106)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,116)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,112)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,111)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,108)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,107)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,114)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,110)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,113)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,116)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,112)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,109)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,116)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,112)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,105)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,115)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,111)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,114)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,117)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,110)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,107)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,114)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,106)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,113)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,116)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{40,\lambda}(2,4;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{40,2}(2,4;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
117 |
118 |
119 |
111 |
· |
· |
· |
112 |
· |
1
| · |
113 |
· |
· |
· |
114 |
· |
1
| · |
115 |
· |
· |
· |
116 |
· |
1
| · |
117 |
· |
· |
· |
118 |
· |
1
| · |
119 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{40,\textbf{a}}(2,4;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!