Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(4,0,0) |
(11,1,0) |
(18,1,1) |
(24,3,1) |
(30,4,2) |
(36,4,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(78,30,16) |
(82,30,20) |
(85,34,21) |
(88,37,23) |
(91,39,26) |
(94,40,30) |
(97,40,35) |
(99,46,35) |
(101,51,36) |
(103,55,38) |
(105,58,41) |
(107,60,45) |
(109,61,50) |
(111,61,56) |
(112,68,56) |
(113,74,57) |
(114,79,59) |
(115,83,62) |
(116,86,66) |
(117,88,71) |
(118,89,77) |
(119,89,84) |
(119,96,85) |
(119,102,87) |
(119,107,90) |
(119,111,94) |
(119,114,99) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(118,118,104) |
(119,118,111) |
(119,119,118) |
\(\lambda=(119,108,105)\)
- Multiplicity: 1
- Dimension: 384
- Dominant: No
\(\lambda=(119,109,104)\)
- Multiplicity: 1
- Dimension: 561
- Dominant: No
\(\lambda=(119,110,103)\)
- Multiplicity: 1
- Dimension: 720
- Dominant: No
\(\lambda=(119,114,99)\)
- Multiplicity: 1
- Dimension: 1056
- Dominant: Yes
\(\lambda=(119,112,101)\)
- Multiplicity: 1
- Dimension: 960
- Dominant: No
\(\lambda=(119,111,102)\)
- Multiplicity: 1
- Dimension: 855
- Dominant: No
\(\textbf{a}=(109,106,117)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,103)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,110)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,111)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,116)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,103)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,109)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,110)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,116)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,115)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,102)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,108)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,109)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,115)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,114)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,101)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,108)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,114)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,113)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,107)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,107)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,106)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,100)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,113)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,106)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,112)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,113)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,105)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,111)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,112)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,104)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,111)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,117)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,103)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,104)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,110)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,111)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,116)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,103)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,109)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,110)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,116)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,115)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,102)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,108)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,109)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,115)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,114)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,101)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,108)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,114)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,108)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,107)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,114)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,107)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,106)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,113)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,106)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,112)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,113)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,105)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,111)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,112)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,118)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,104)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,111)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,117)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,104)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,110)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,111)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,116)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,103)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,109)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,110)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,116)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,115)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,102)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,109)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,115)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,101)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,108)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,114)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,108)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,107)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,101)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,114)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,107)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,106)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,113)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,106)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,112)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,113)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,105)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,111)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,112)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,105)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,104)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,111)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,112)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,117)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,104)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,110)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,111)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,117)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,116)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,103)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,109)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,110)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,116)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,115)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,102)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,109)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,115)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,108)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,109)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,115)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,114)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,108)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,107)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,101)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,114)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,107)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,113)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,106)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,112)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,113)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,105)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,112)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,105)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,104)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,111)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,112)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,117)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,104)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,110)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,111)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,117)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,116)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,103)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,109)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,110)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,116)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,115)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,102)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,109)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,115)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,114)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,102)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,108)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,109)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,115)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,114)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,108)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,107)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,101)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,114)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,107)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,113)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,106)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,112)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,113)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,106)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,105)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,112)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,113)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,105)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,111)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,112)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,117)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,104)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,110)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,111)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,117)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,116)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,103)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,110)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,116)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,102)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,109)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,115)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,102)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,108)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,109)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,115)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,114)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,108)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,107)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,101)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,114)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,107)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,100)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,114)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,106)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,113)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,106)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,105)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,112)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,113)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,118)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,105)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,111)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,112)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,117)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,104)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,110)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,111)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,117)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,116)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,103)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,110)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,116)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,103)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,109)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,110)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,116)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,115)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,102)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,108)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,109)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,115)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,114)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,108)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,101)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,114)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,113)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,107)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,100)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,107)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,106)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,113)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,106)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,105)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,99)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,112)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,105)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,111)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,112)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,117)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,104)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,111)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{40,\lambda}(2,4;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{40,1}(2,4;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
118 |
119 |
120 |
107 |
· |
· |
· |
108 |
· |
1
| · |
109 |
· |
1
| · |
110 |
· |
1
| · |
111 |
· |
1
| · |
112 |
· |
1
| · |
113 |
· |
· |
· |
114 |
· |
1
| · |
115 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{40,\textbf{a}}(2,4;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!