Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(4,0,0) |
(11,1,0) |
(18,1,1) |
(24,3,1) |
(30,4,2) |
(36,4,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(78,30,16) |
(82,30,20) |
(85,34,21) |
(88,37,23) |
(91,39,26) |
(94,40,30) |
(97,40,35) |
(99,46,35) |
(101,51,36) |
(103,55,38) |
(105,58,41) |
(107,60,45) |
(109,61,50) |
(111,61,56) |
(112,68,56) |
(113,74,57) |
(114,79,59) |
(115,83,62) |
(116,86,66) |
(117,88,71) |
(118,89,77) |
(119,89,84) |
(119,96,85) |
(119,102,87) |
(119,107,90) |
(119,111,94) |
(119,114,99) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(118,118,104) |
(119,118,111) |
(119,119,118) |
\(\lambda=(119,118,111)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: Yes
\(\textbf{a}=(113,116,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,118,111)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,117,112)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,116,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,119,112)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,115,114)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,113)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,119,114)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,119,111)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,118,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,113)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,119,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{41,\lambda}(2,4;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{41,2}(2,4;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
118 |
119 |
120 |
117 |
· |
· |
· |
118 |
· |
1
| · |
119 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{41,\textbf{a}}(2,4;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
111 |
· |
· |
· |
· |
· |
· |
· |
1
| 1
| · |
112 |
· |
· |
· |
· |
· |
· |
1
| 2
| 1
| · |
113 |
· |
· |
· |
· |
· |
1
| 2
| 2
| 1
| · |
114 |
· |
· |
· |
· |
1
| 2
| 2
| 2
| 1
| · |
115 |
· |
· |
· |
1
| 2
| 2
| 2
| 2
| 1
| · |
116 |
· |
· |
1
| 2
| 2
| 2
| 2
| 2
| 1
| · |
117 |
· |
1
| 2
| 2
| 2
| 2
| 2
| 2
| 1
| · |
118 |
1
| 2
| 2
| 2
| 2
| 2
| 2
| 2
| 1
| · |
119 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
120 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |