Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(0,0,0) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
(14,2,0) |
(21,2,1) |
(27,4,1) |
(33,5,2) |
(39,5,4) |
(44,8,4) |
(49,10,5) |
(54,11,7) |
(59,11,10) |
(63,15,10) |
(67,18,11) |
(71,20,13) |
(75,21,16) |
(79,21,20) |
(82,26,20) |
(85,30,21) |
(88,33,23) |
(91,35,26) |
(94,36,30) |
(97,36,35) |
(99,42,35) |
(101,47,36) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(118,104,82) |
(119,104,89) |
(119,109,92) |
(119,113,96) |
(119,116,101) |
(119,118,107) |
(119,119,114) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
4 |
45 |
89 |
133 |
179 |
228 |
278 |
331 |
380 |
430 |
477 |
525 |
567 |
608 |
639 |
673 |
698 |
718 |
729 |
741 |
743 |
742 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
198 |
157 |
115 |
75 |
37 |
5 |
1 |
\(\lambda=(117,105,98)\)
- Multiplicity: 29
- Dimension: 1092
- Dominant: No
\(\lambda=(118,111,91)\)
- Multiplicity: 4
- Dimension: 2436
- Dominant: No
\(\lambda=(113,113,94)\)
- Multiplicity: 9
- Dimension: 210
- Dominant: No
\(\lambda=(112,107,101)\)
- Multiplicity: 76
- Dimension: 273
- Dominant: No
\(\lambda=(110,110,100)\)
- Multiplicity: 19
- Dimension: 66
- Dominant: No
\(\lambda=(116,114,90)\)
- Multiplicity: 3
- Dimension: 1050
- Dominant: No
\(\lambda=(115,108,97)\)
- Multiplicity: 59
- Dimension: 960
- Dominant: No
\(\lambda=(107,107,106)\)
- Multiplicity: 2
- Dimension: 3
- Dominant: No
\(\lambda=(117,103,100)\)
- Multiplicity: 20
- Dimension: 570
- Dominant: No
\(\lambda=(118,109,93)\)
- Multiplicity: 8
- Dimension: 2295
- Dominant: No
\(\lambda=(113,111,96)\)
- Multiplicity: 34
- Dimension: 456
- Dominant: No
\(\lambda=(112,105,103)\)
- Multiplicity: 44
- Dimension: 132
- Dominant: No
\(\lambda=(110,108,102)\)
- Multiplicity: 44
- Dimension: 105
- Dominant: No
\(\lambda=(116,112,92)\)
- Multiplicity: 12
- Dimension: 1365
- Dominant: No
\(\lambda=(115,106,99)\)
- Multiplicity: 63
- Dimension: 720
- Dominant: No
\(\lambda=(118,107,95)\)
- Multiplicity: 13
- Dimension: 1950
- Dominant: No
\(\lambda=(113,109,98)\)
- Multiplicity: 67
- Dimension: 510
- Dominant: No
\(\lambda=(110,106,104)\)
- Multiplicity: 29
- Dimension: 60
- Dominant: No
\(\lambda=(116,110,94)\)
- Multiplicity: 26
- Dimension: 1428
- Dominant: No
\(\lambda=(115,104,101)\)
- Multiplicity: 42
- Dimension: 384
- Dominant: No
\(\lambda=(118,105,97)\)
- Multiplicity: 14
- Dimension: 1449
- Dominant: No
\(\lambda=(114,113,93)\)
- Multiplicity: 11
- Dimension: 483
- Dominant: No
\(\lambda=(113,107,100)\)
- Multiplicity: 81
- Dimension: 420
- Dominant: No
\(\lambda=(116,108,96)\)
- Multiplicity: 42
- Dimension: 1287
- Dominant: No
\(\lambda=(117,114,89)\)
- Multiplicity: 1
- Dimension: 1560
- Dominant: No
\(\lambda=(111,110,99)\)
- Multiplicity: 36
- Dimension: 168
- Dominant: No
\(\lambda=(108,107,105)\)
- Multiplicity: 10
- Dimension: 15
- Dominant: No
\(\lambda=(119,109,92)\)
- Multiplicity: 1
- Dimension: 2871
- Dominant: Yes
\(\lambda=(118,103,99)\)
- Multiplicity: 11
- Dimension: 840
- Dominant: No
\(\lambda=(114,111,95)\)
- Multiplicity: 33
- Dimension: 714
- Dominant: No
\(\lambda=(113,105,102)\)
- Multiplicity: 55
- Dimension: 234
- Dominant: No
\(\lambda=(111,108,101)\)
- Multiplicity: 62
- Dimension: 192
- Dominant: No
\(\lambda=(116,106,98)\)
- Multiplicity: 47
- Dimension: 990
- Dominant: No
\(\lambda=(117,112,91)\)
- Multiplicity: 6
- Dimension: 1848
- Dominant: No
\(\lambda=(119,107,94)\)
- Multiplicity: 1
- Dimension: 2457
- Dominant: No
\(\lambda=(118,101,101)\)
- Multiplicity: 3
- Dimension: 171
- Dominant: No
\(\lambda=(115,115,90)\)
- Multiplicity: 2
- Dimension: 351
- Dominant: No
\(\lambda=(114,109,97)\)
- Multiplicity: 63
- Dimension: 741
- Dominant: No
\(\lambda=(111,106,103)\)
- Multiplicity: 49
- Dimension: 120
- Dominant: No
\(\lambda=(116,104,100)\)
- Multiplicity: 35
- Dimension: 585
- Dominant: No
\(\lambda=(117,110,93)\)
- Multiplicity: 14
- Dimension: 1872
- Dominant: No
\(\lambda=(112,112,96)\)
- Multiplicity: 10
- Dimension: 153
- Dominant: No
\(\lambda=(109,109,102)\)
- Multiplicity: 17
- Dimension: 36
- Dominant: No
\(\lambda=(119,105,96)\)
- Multiplicity: 3
- Dimension: 1875
- Dominant: No
\(\lambda=(115,113,92)\)
- Multiplicity: 11
- Dimension: 825
- Dominant: No
\(\lambda=(114,107,99)\)
- Multiplicity: 78
- Dimension: 612
- Dominant: No
\(\lambda=(117,108,95)\)
- Multiplicity: 24
- Dimension: 1680
- Dominant: No
\(\lambda=(116,102,102)\)
- Multiplicity: 7
- Dimension: 120
- Dominant: No
\(\lambda=(112,110,98)\)
- Multiplicity: 45
- Dimension: 312
- Dominant: No
\(\lambda=(109,107,104)\)
- Multiplicity: 24
- Dimension: 42
- Dominant: No
\(\lambda=(119,103,98)\)
- Multiplicity: 2
- Dimension: 1173
- Dominant: No
\(\lambda=(115,111,94)\)
- Multiplicity: 27
- Dimension: 1035
- Dominant: No
\(\lambda=(114,105,101)\)
- Multiplicity: 61
- Dimension: 375
- Dominant: No
\(\lambda=(117,106,97)\)
- Multiplicity: 30
- Dimension: 1320
- Dominant: No
\(\lambda=(118,112,90)\)
- Multiplicity: 2
- Dimension: 2415
- Dominant: No
\(\lambda=(112,108,100)\)
- Multiplicity: 72
- Dimension: 315
- Dominant: No
\(\lambda=(116,115,89)\)
- Multiplicity: 2
- Dimension: 783
- Dominant: No
\(\lambda=(119,101,100)\)
- Multiplicity: 1
- Dimension: 399
- Dominant: No
\(\lambda=(115,109,96)\)
- Multiplicity: 51
- Dimension: 1029
- Dominant: No
\(\lambda=(114,103,103)\)
- Multiplicity: 17
- Dimension: 78
- Dominant: No
\(\lambda=(117,104,99)\)
- Multiplicity: 25
- Dimension: 840
- Dominant: No
\(\lambda=(118,110,92)\)
- Multiplicity: 5
- Dimension: 2394
- Dominant: No
\(\lambda=(113,112,95)\)
- Multiplicity: 19
- Dimension: 360
- Dominant: No
\(\lambda=(112,106,102)\)
- Multiplicity: 62
- Dimension: 210
- Dominant: No
\(\lambda=(110,109,101)\)
- Multiplicity: 37
- Dimension: 99
- Dominant: No
\(\lambda=(116,113,91)\)
- Multiplicity: 8
- Dimension: 1242
- Dominant: No
\(\lambda=(115,107,98)\)
- Multiplicity: 65
- Dimension: 855
- Dominant: No
\(\lambda=(117,102,101)\)
- Multiplicity: 10
- Dimension: 288
- Dominant: No
\(\lambda=(118,108,94)\)
- Multiplicity: 10
- Dimension: 2145
- Dominant: No
\(\lambda=(113,110,97)\)
- Multiplicity: 50
- Dimension: 504
- Dominant: No
\(\lambda=(112,104,104)\)
- Multiplicity: 13
- Dimension: 45
- Dominant: No
\(\lambda=(110,107,103)\)
- Multiplicity: 44
- Dimension: 90
- Dominant: No
\(\lambda=(116,111,93)\)
- Multiplicity: 20
- Dimension: 1425
- Dominant: No
\(\lambda=(115,105,100)\)
- Multiplicity: 57
- Dimension: 561
- Dominant: No
\(\lambda=(118,106,96)\)
- Multiplicity: 13
- Dimension: 1716
- Dominant: No
\(\lambda=(114,114,92)\)
- Multiplicity: 2
- Dimension: 276
- Dominant: No
\(\lambda=(113,108,99)\)
- Multiplicity: 76
- Dimension: 480
- Dominant: No
\(\lambda=(110,105,105)\)
- Multiplicity: 11
- Dimension: 21
- Dominant: No
\(\lambda=(116,109,95)\)
- Multiplicity: 37
- Dimension: 1380
- Dominant: No
\(\lambda=(117,115,88)\)
- Multiplicity: 1
- Dimension: 1302
- Dominant: Yes
\(\lambda=(115,103,102)\)
- Multiplicity: 23
- Dimension: 195
- Dominant: No
\(\lambda=(111,111,98)\)
- Multiplicity: 17
- Dimension: 105
- Dominant: No
\(\lambda=(108,108,104)\)
- Multiplicity: 8
- Dimension: 15
- Dominant: No
\(\lambda=(118,104,98)\)
- Multiplicity: 12
- Dimension: 1155
- Dominant: No
\(\lambda=(114,112,94)\)
- Multiplicity: 19
- Dimension: 627
- Dominant: No
\(\lambda=(113,106,101)\)
- Multiplicity: 72
- Dimension: 336
- Dominant: No
\(\lambda=(111,109,100)\)
- Multiplicity: 55
- Dimension: 195
- Dominant: No
\(\lambda=(116,107,97)\)
- Multiplicity: 49
- Dimension: 1155
- Dominant: No
\(\lambda=(117,113,90)\)
- Multiplicity: 4
- Dimension: 1740
- Dominant: No
\(\lambda=(108,106,106)\)
- Multiplicity: 4
- Dimension: 6
- Dominant: No
\(\lambda=(119,108,93)\)
- Multiplicity: 1
- Dimension: 2688
- Dominant: No
\(\lambda=(118,102,100)\)
- Multiplicity: 6
- Dimension: 510
- Dominant: No
\(\lambda=(114,110,96)\)
- Multiplicity: 46
- Dimension: 750
- Dominant: No
\(\lambda=(113,104,103)\)
- Multiplicity: 30
- Dimension: 120
- Dominant: No
\(\lambda=(111,107,102)\)
- Multiplicity: 62
- Dimension: 165
- Dominant: No
\(\lambda=(116,105,99)\)
- Multiplicity: 46
- Dimension: 798
- Dominant: No
\(\lambda=(117,111,92)\)
- Multiplicity: 10
- Dimension: 1890
- Dominant: No
\(\lambda=(119,106,95)\)
- Multiplicity: 2
- Dimension: 2184
- Dominant: No
\(\lambda=(115,114,91)\)
- Multiplicity: 4
- Dimension: 624
- Dominant: No
\(\lambda=(114,108,98)\)
- Multiplicity: 70
- Dimension: 693
- Dominant: No
\(\lambda=(111,105,104)\)
- Multiplicity: 26
- Dimension: 63
- Dominant: No
\(\lambda=(117,109,94)\)
- Multiplicity: 20
- Dimension: 1800
- Dominant: No
\(\lambda=(116,103,101)\)
- Multiplicity: 26
- Dimension: 357
- Dominant: No
\(\lambda=(112,111,97)\)
- Multiplicity: 28
- Dimension: 255
- Dominant: No
\(\lambda=(109,108,103)\)
- Multiplicity: 25
- Dimension: 48
- Dominant: No
\(\lambda=(119,104,97)\)
- Multiplicity: 2
- Dimension: 1536
- Dominant: No
\(\lambda=(115,112,93)\)
- Multiplicity: 17
- Dimension: 960
- Dominant: No
\(\lambda=(114,106,100)\)
- Multiplicity: 71
- Dimension: 504
- Dominant: No
\(\lambda=(117,107,96)\)
- Multiplicity: 29
- Dimension: 1518
- Dominant: No
\(\lambda=(118,113,89)\)
- Multiplicity: 1
- Dimension: 2325
- Dominant: Yes
\(\lambda=(112,109,99)\)
- Multiplicity: 64
- Dimension: 330
- Dominant: No
\(\lambda=(109,106,105)\)
- Multiplicity: 14
- Dimension: 24
- Dominant: No
\(\lambda=(119,102,99)\)
- Multiplicity: 2
- Dimension: 792
- Dominant: No
\(\lambda=(115,110,95)\)
- Multiplicity: 38
- Dimension: 1056
- Dominant: No
\(\lambda=(114,104,102)\)
- Multiplicity: 38
- Dimension: 231
- Dominant: No
\(\textbf{a}=(96,107,117)\)
- Multiplicity: 224
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,93,112)\)
- Multiplicity: 219
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,113,110)\)
- Multiplicity: 2043
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,98)\)
- Multiplicity: 350
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,91)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,119,103)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,105)\)
- Multiplicity: 942
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,100,117)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,106,110)\)
- Multiplicity: 12825
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,96)\)
- Multiplicity: 69
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,103)\)
- Multiplicity: 8137
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,93,117)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,113,115)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,89)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,96)\)
- Multiplicity: 1392
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,103)\)
- Multiplicity: 8137
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,119,108)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,99,110)\)
- Multiplicity: 4834
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,106,115)\)
- Multiplicity: 1725
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,101)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,98,103)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,112,108)\)
- Multiplicity: 5562
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,92,110)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,99,115)\)
- Multiplicity: 1725
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,101)\)
- Multiplicity: 7874
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,94)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,105,108)\)
- Multiplicity: 16075
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,92,115)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,112,113)\)
- Multiplicity: 880
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,101)\)
- Multiplicity: 2187
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,94)\)
- Multiplicity: 231
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,118,106)\)
- Multiplicity: 69
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,98,108)\)
- Multiplicity: 2134
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,105,113)\)
- Multiplicity: 5663
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,99)\)
- Multiplicity: 404
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,106)\)
- Multiplicity: 10215
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,112,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,98,113)\)
- Multiplicity: 2807
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,118,111)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,99)\)
- Multiplicity: 4834
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,92)\)
- Multiplicity: 82
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,106)\)
- Multiplicity: 12825
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,105,118)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,91,113)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,111,111)\)
- Multiplicity: 3445
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,99)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,104)\)
- Multiplicity: 404
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,106)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,98,118)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,104,111)\)
- Multiplicity: 10747
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,97)\)
- Multiplicity: 642
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,104)\)
- Multiplicity: 12825
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,91,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,111,116)\)
- Multiplicity: 145
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,97,111)\)
- Multiplicity: 2284
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,90)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,97)\)
- Multiplicity: 1617
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,104)\)
- Multiplicity: 5946
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,117,109)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,104,116)\)
- Multiplicity: 1058
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,102)\)
- Multiplicity: 1164
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,110,109)\)
- Multiplicity: 8556
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,97,116)\)
- Multiplicity: 642
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,117,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,102)\)
- Multiplicity: 10776
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,95)\)
- Multiplicity: 566
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,103,109)\)
- Multiplicity: 12760
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,90,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,110,114)\)
- Multiplicity: 1145
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,102)\)
- Multiplicity: 1164
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,95)\)
- Multiplicity: 163
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,107)\)
- Multiplicity: 642
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,96,109)\)
- Multiplicity: 821
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,103,114)\)
- Multiplicity: 3928
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,100)\)
- Multiplicity: 1990
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,107)\)
- Multiplicity: 14252
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,96,114)\)
- Multiplicity: 1145
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,116,112)\)
- Multiplicity: 82
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,100)\)
- Multiplicity: 5562
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,93)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,107)\)
- Multiplicity: 9214
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,103,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,89,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,109,112)\)
- Multiplicity: 4401
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,100)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,105)\)
- Multiplicity: 1990
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,95,107)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,96,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,102,112)\)
- Multiplicity: 7545
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,98)\)
- Multiplicity: 2134
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,105)\)
- Multiplicity: 16075
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,109,117)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,95,112)\)
- Multiplicity: 880
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,115,110)\)
- Multiplicity: 566
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,98)\)
- Multiplicity: 1424
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,91)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,105)\)
- Multiplicity: 3568
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,102,117)\)
- Multiplicity: 468
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,108,110)\)
- Multiplicity: 10356
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,103)\)
- Multiplicity: 3928
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,95,117)\)
- Multiplicity: 163
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,115,115)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,101,110)\)
- Multiplicity: 8556
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,96)\)
- Multiplicity: 1392
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,103)\)
- Multiplicity: 11855
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,88,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,108,115)\)
- Multiplicity: 1113
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,96)\)
- Multiplicity: 69
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,103)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,114,108)\)
- Multiplicity: 2134
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,94,110)\)
- Multiplicity: 231
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,101,115)\)
- Multiplicity: 2187
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,101)\)
- Multiplicity: 5137
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,94)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,107,108)\)
- Multiplicity: 16075
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,94,115)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,114,113)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,101)\)
- Multiplicity: 5137
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,94)\)
- Multiplicity: 467
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,100,108)\)
- Multiplicity: 5562
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,107,113)\)
- Multiplicity: 4432
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,99)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,106)\)
- Multiplicity: 5137
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,93,108)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,100,113)\)
- Multiplicity: 4432
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,99)\)
- Multiplicity: 4401
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,92)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,106)\)
- Multiplicity: 16531
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,107,118)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,93,113)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,113,111)\)
- Multiplicity: 1392
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,99)\)
- Multiplicity: 942
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,92)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,119,104)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,106)\)
- Multiplicity: 1725
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,100,118)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,106,111)\)
- Multiplicity: 10215
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,97)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,104)\)
- Multiplicity: 8334
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,93,118)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,113,116)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,99,111)\)
- Multiplicity: 4834
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,97)\)
- Multiplicity: 2284
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,90)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,104)\)
- Multiplicity: 10747
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,119,109)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,106,116)\)
- Multiplicity: 796
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,92,111)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,97)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,102)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,104)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,112,109)\)
- Multiplicity: 4401
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,99,116)\)
- Multiplicity: 942
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,102)\)
- Multiplicity: 9214
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,95)\)
- Multiplicity: 163
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,105,109)\)
- Multiplicity: 15050
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,92,116)\)
- Multiplicity: 82
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,112,114)\)
- Multiplicity: 467
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,102)\)
- Multiplicity: 3829
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,88)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,95)\)
- Multiplicity: 566
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,118,107)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,98,109)\)
- Multiplicity: 2807
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,105,114)\)
- Multiplicity: 3568
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,100)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,107)\)
- Multiplicity: 9214
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,98,114)\)
- Multiplicity: 2134
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,118,112)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,100)\)
- Multiplicity: 6640
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,93)\)
- Multiplicity: 145
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,107)\)
- Multiplicity: 14252
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,105,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,91,114)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,111,112)\)
- Multiplicity: 2284
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,100)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,93)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,105)\)
- Multiplicity: 350
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,107)\)
- Multiplicity: 642
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,98,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,104,112)\)
- Multiplicity: 8334
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,98)\)
- Multiplicity: 796
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,105)\)
- Multiplicity: 13171
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,111,117)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,97,112)\)
- Multiplicity: 2284
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,117,110)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,98)\)
- Multiplicity: 2807
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,91)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,105)\)
- Multiplicity: 8137
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,104,117)\)
- Multiplicity: 404
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,90,112)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,110,110)\)
- Multiplicity: 6640
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,103)\)
- Multiplicity: 1139
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,96,105)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,97,117)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(88,117,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,103,110)\)
- Multiplicity: 11855
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,96)\)
- Multiplicity: 821
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,103)\)
- Multiplicity: 12760
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,90,117)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,110,115)\)
- Multiplicity: 566
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,89)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,96)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,103)\)
- Multiplicity: 2294
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,116,108)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,96,110)\)
- Multiplicity: 1145
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,103,115)\)
- Multiplicity: 2294
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,101)\)
- Multiplicity: 2187
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,109,108)\)
- Multiplicity: 12760
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,96,115)\)
- Multiplicity: 821
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,116,113)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,101)\)
- Multiplicity: 7874
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,94)\)
- Multiplicity: 467
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,102,108)\)
- Multiplicity: 10356
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,89,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,109,113)\)
- Multiplicity: 2807
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,101)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,94)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,106)\)
- Multiplicity: 1725
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,95,108)\)
- Multiplicity: 163
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,102,113)\)
- Multiplicity: 5663
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,99)\)
- Multiplicity: 2670
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,106)\)
- Multiplicity: 16531
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,109,118)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,95,113)\)
- Multiplicity: 880
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,115,111)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,99)\)
- Multiplicity: 2670
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,92)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,106)\)
- Multiplicity: 5137
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,102,118)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,108,111)\)
- Multiplicity: 7874
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,104)\)
- Multiplicity: 3829
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,95,118)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,115,116)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,101,111)\)
- Multiplicity: 7874
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,97)\)
- Multiplicity: 2043
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,104)\)
- Multiplicity: 14252
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,108,116)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,94,111)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,90)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,97)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,104)\)
- Multiplicity: 1058
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,114,109)\)
- Multiplicity: 1617
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,101,116)\)
- Multiplicity: 1139
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,95)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,102)\)
- Multiplicity: 5663
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,107,109)\)
- Multiplicity: 14252
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,94,116)\)
- Multiplicity: 231
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,114,114)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,102)\)
- Multiplicity: 7545
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,95)\)
- Multiplicity: 880
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,100,109)\)
- Multiplicity: 6361
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,107,114)\)
- Multiplicity: 2670
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,102)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,100)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,107)\)
- Multiplicity: 4432
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,93,109)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,100,114)\)
- Multiplicity: 3161
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,100)\)
- Multiplicity: 5562
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,93)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,107)\)
- Multiplicity: 17065
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,107,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,93,114)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,113,112)\)
- Multiplicity: 880
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,100)\)
- Multiplicity: 1990
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,93)\)
- Multiplicity: 145
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,119,105)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,107)\)
- Multiplicity: 2670
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,100,119)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,106,112)\)
- Multiplicity: 7545
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,98)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,105)\)
- Multiplicity: 8137
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,93,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,113,117)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,99,112)\)
- Multiplicity: 4401
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,98)\)
- Multiplicity: 3445
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,91)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,105)\)
- Multiplicity: 13171
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,106,117)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,92,112)\)
- Multiplicity: 82
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,112,110)\)
- Multiplicity: 3272
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,98)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,103)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,105)\)
- Multiplicity: 350
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,99,117)\)
- Multiplicity: 404
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,105,110)\)
- Multiplicity: 13171
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,96)\)
- Multiplicity: 224
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,103)\)
- Multiplicity: 10215
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,92,117)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,112,115)\)
- Multiplicity: 219
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,89)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,96)\)
- Multiplicity: 1145
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,103)\)
- Multiplicity: 5946
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,118,108)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,98,110)\)
- Multiplicity: 3272
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,105,115)\)
- Multiplicity: 1990
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,101)\)
- Multiplicity: 468
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,111,108)\)
- Multiplicity: 7874
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,98,115)\)
- Multiplicity: 1424
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,118,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,101)\)
- Multiplicity: 8556
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,94)\)
- Multiplicity: 231
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,104,108)\)
- Multiplicity: 14745
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,91,115)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,111,113)\)
- Multiplicity: 1392
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,101)\)
- Multiplicity: 1139
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,94)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,106)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,97,108)\)
- Multiplicity: 1113
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,104,113)\)
- Multiplicity: 5946
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,99)\)
- Multiplicity: 942
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,106)\)
- Multiplicity: 12825
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,111,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,97,113)\)
- Multiplicity: 2043
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,117,111)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,99)\)
- Multiplicity: 4401
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,92)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,106)\)
- Multiplicity: 10215
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,104,118)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,90,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,110,111)\)
- Multiplicity: 4834
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,99)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,104)\)
- Multiplicity: 1058
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,96,106)\)
- Multiplicity: 69
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,97,118)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,103,111)\)
- Multiplicity: 10215
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,97)\)
- Multiplicity: 1113
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,104)\)
- Multiplicity: 14252
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,90,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,110,116)\)
- Multiplicity: 231
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,96,111)\)
- Multiplicity: 1392
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,90)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,97)\)
- Multiplicity: 1113
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,104)\)
- Multiplicity: 3829
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,116,109)\)
- Multiplicity: 348
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,103,116)\)
- Multiplicity: 1139
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,102)\)
- Multiplicity: 2294
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,109,109)\)
- Multiplicity: 10776
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,96,116)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,116,114)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,102)\)
- Multiplicity: 10356
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,95)\)
- Multiplicity: 761
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,102,109)\)
- Multiplicity: 10776
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,89,116)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,109,114)\)
- Multiplicity: 1617
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,102)\)
- Multiplicity: 468
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,95)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,107)\)
- Multiplicity: 1424
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,95,109)\)
- Multiplicity: 348
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,102,114)\)
- Multiplicity: 3829
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,100)\)
- Multiplicity: 3161
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,107)\)
- Multiplicity: 16075
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,109,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,95,114)\)
- Multiplicity: 761
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,115,112)\)
- Multiplicity: 219
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,100)\)
- Multiplicity: 4432
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,93)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,107)\)
- Multiplicity: 6659
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,102,119)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,108,112)\)
- Multiplicity: 5562
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,105)\)
- Multiplicity: 3568
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,94,107)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,95,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(88,115,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,101,112)\)
- Multiplicity: 6659
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,98)\)
- Multiplicity: 2807
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,105)\)
- Multiplicity: 16075
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,108,117)\)
- Multiplicity: 163
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,94,112)\)
- Multiplicity: 467
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,114,110)\)
- Multiplicity: 1145
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,98)\)
- Multiplicity: 796
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,91)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,105)\)
- Multiplicity: 1990
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,101,117)\)
- Multiplicity: 468
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,107,110)\)
- Multiplicity: 11855
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,96)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,103)\)
- Multiplicity: 5946
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,94,117)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,114,115)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,89)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,96)\)
- Multiplicity: 1477
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,103)\)
- Multiplicity: 10215
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,100,110)\)
- Multiplicity: 6640
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,107,115)\)
- Multiplicity: 1424
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,101)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,96)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,103)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,113,108)\)
- Multiplicity: 3625
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,93,110)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,100,115)\)
- Multiplicity: 1990
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,101)\)
- Multiplicity: 6659
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,94)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,106,108)\)
- Multiplicity: 16531
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,93,115)\)
- Multiplicity: 219
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,113,113)\)
- Multiplicity: 511
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,101)\)
- Multiplicity: 3568
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,94)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,119,106)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,99,108)\)
- Multiplicity: 3625
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,106,113)\)
- Multiplicity: 5137
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,99)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,106)\)
- Multiplicity: 7545
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,113,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,99,113)\)
- Multiplicity: 3625
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,99)\)
- Multiplicity: 4834
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,92)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,106)\)
- Multiplicity: 15050
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,106,118)\)
- Multiplicity: 69
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,92,113)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,112,111)\)
- Multiplicity: 2284
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,99)\)
- Multiplicity: 404
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,92)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,104)\)
- Multiplicity: 104
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,106)\)
- Multiplicity: 796
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,99,118)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,105,111)\)
- Multiplicity: 10747
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,97)\)
- Multiplicity: 288
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,104)\)
- Multiplicity: 10747
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,92,118)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,112,116)\)
- Multiplicity: 82
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,98,111)\)
- Multiplicity: 3445
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,90)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,97)\)
- Multiplicity: 2043
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,104)\)
- Multiplicity: 8334
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,118,109)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,105,116)\)
- Multiplicity: 942
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,91,111)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,102)\)
- Multiplicity: 468
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,97,104)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,111,109)\)
- Multiplicity: 6361
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,98,116)\)
- Multiplicity: 796
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,102)\)
- Multiplicity: 10356
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,95)\)
- Multiplicity: 348
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,104,109)\)
- Multiplicity: 14252
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,91,116)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,111,114)\)
- Multiplicity: 761
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,102)\)
- Multiplicity: 2294
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,88)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,95)\)
- Multiplicity: 348
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,117,107)\)
- Multiplicity: 224
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,97,109)\)
- Multiplicity: 1617
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,104,114)\)
- Multiplicity: 3829
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,100)\)
- Multiplicity: 1058
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,107)\)
- Multiplicity: 11855
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,97,114)\)
- Multiplicity: 1617
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,117,112)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,100)\)
- Multiplicity: 6361
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,93)\)
- Multiplicity: 219
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,107)\)
- Multiplicity: 11855
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,104,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,90,114)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,110,112)\)
- Multiplicity: 3272
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,100)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,93)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,105)\)
- Multiplicity: 942
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,96,107)\)
- Multiplicity: 224
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,97,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,103,112)\)
- Multiplicity: 8137
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,98)\)
- Multiplicity: 1424
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,105)\)
- Multiplicity: 15050
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,110,117)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,96,112)\)
- Multiplicity: 1477
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,116,110)\)
- Multiplicity: 231
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,98)\)
- Multiplicity: 2134
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,91)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,105)\)
- Multiplicity: 5663
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,103,117)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,109,110)\)
- Multiplicity: 8556
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,103)\)
- Multiplicity: 2294
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,96,117)\)
- Multiplicity: 224
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,116,115)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,102,110)\)
- Multiplicity: 10356
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,96)\)
- Multiplicity: 1145
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,103)\)
- Multiplicity: 12760
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,89,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,109,115)\)
- Multiplicity: 821
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,89)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,96)\)
- Multiplicity: 224
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,103)\)
- Multiplicity: 1139
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,115,108)\)
- Multiplicity: 1113
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,95,110)\)
- Multiplicity: 566
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,102,115)\)
- Multiplicity: 2294
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,101)\)
- Multiplicity: 3568
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,108,108)\)
- Multiplicity: 14745
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,95,115)\)
- Multiplicity: 566
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,115,113)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,101)\)
- Multiplicity: 6659
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,94)\)
- Multiplicity: 511
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,101,108)\)
- Multiplicity: 7874
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,88,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,108,113)\)
- Multiplicity: 3625
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,101)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,106)\)
- Multiplicity: 3161
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,94,108)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,101,113)\)
- Multiplicity: 5137
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,99)\)
- Multiplicity: 3625
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,106)\)
- Multiplicity: 17065
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,108,118)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,94,113)\)
- Multiplicity: 511
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,114,111)\)
- Multiplicity: 761
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,99)\)
- Multiplicity: 1725
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,92)\)
- Multiplicity: 82
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,106)\)
- Multiplicity: 3161
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,101,118)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,107,111)\)
- Multiplicity: 9214
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,97)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,104)\)
- Multiplicity: 5946
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,94,118)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,114,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,100,111)\)
- Multiplicity: 6361
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,97)\)
- Multiplicity: 2284
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,90)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,104)\)
- Multiplicity: 12825
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,107,116)\)
- Multiplicity: 642
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,93,111)\)
- Multiplicity: 145
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,97)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,102)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,104)\)
- Multiplicity: 404
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,113,109)\)
- Multiplicity: 2807
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,100,116)\)
- Multiplicity: 1058
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,95)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,102)\)
- Multiplicity: 7545
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,106,109)\)
- Multiplicity: 15050
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,93,116)\)
- Multiplicity: 145
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,113,114)\)
- Multiplicity: 264
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,102)\)
- Multiplicity: 5663
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,88)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,95)\)
- Multiplicity: 761
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,119,107)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,99,109)\)
- Multiplicity: 4401
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,106,114)\)
- Multiplicity: 3161
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,100)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,107)\)
- Multiplicity: 6659
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,92,109)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,99,114)\)
- Multiplicity: 2670
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,100)\)
- Multiplicity: 6361
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,93)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,107)\)
- Multiplicity: 16075
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,106,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,92,114)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,112,112)\)
- Multiplicity: 1477
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,100)\)
- Multiplicity: 1058
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,93)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,105)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,107)\)
- Multiplicity: 1424
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,99,119)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,105,112)\)
- Multiplicity: 8137
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,98)\)
- Multiplicity: 350
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,105)\)
- Multiplicity: 10747
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,92,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,112,117)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,98,112)\)
- Multiplicity: 3272
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,118,110)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,98)\)
- Multiplicity: 3272
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,91)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,105)\)
- Multiplicity: 10747
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,105,117)\)
- Multiplicity: 350
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,91,112)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,111,110)\)
- Multiplicity: 4834
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,98)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,103)\)
- Multiplicity: 446
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,105)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,98,117)\)
- Multiplicity: 350
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,104,110)\)
- Multiplicity: 12825
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,96)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,103)\)
- Multiplicity: 11855
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,91,117)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,111,115)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,89)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,96)\)
- Multiplicity: 821
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,103)\)
- Multiplicity: 3928
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,117,108)\)
- Multiplicity: 163
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,97,110)\)
- Multiplicity: 2043
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,104,115)\)
- Multiplicity: 2187
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,101)\)
- Multiplicity: 1139
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,110,108)\)
- Multiplicity: 10356
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,97,115)\)
- Multiplicity: 1113
- Dimension: 1
- Error: 0
\(\textbf{a}=(90,117,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,101)\)
- Multiplicity: 8556
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,94)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,103,108)\)
- Multiplicity: 12760
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,90,115)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,110,113)\)
- Multiplicity: 2043
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,101)\)
- Multiplicity: 468
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,94)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,106)\)
- Multiplicity: 796
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,96,108)\)
- Multiplicity: 486
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,103,113)\)
- Multiplicity: 5946
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,99)\)
- Multiplicity: 1725
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,106)\)
- Multiplicity: 15050
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,110,118)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,96,113)\)
- Multiplicity: 1392
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,116,111)\)
- Multiplicity: 145
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,99)\)
- Multiplicity: 3625
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,92)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,106)\)
- Multiplicity: 7545
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,103,118)\)
- Multiplicity: 119
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,89,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,109,111)\)
- Multiplicity: 6361
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,104)\)
- Multiplicity: 2187
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,95,106)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,96,118)\)
- Multiplicity: 69
- Dimension: 1
- Error: 0
\(\textbf{a}=(88,116,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,102,111)\)
- Multiplicity: 9214
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,97)\)
- Multiplicity: 1617
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,104)\)
- Multiplicity: 14745
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,89,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,109,116)\)
- Multiplicity: 348
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,95,111)\)
- Multiplicity: 761
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,90)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,97)\)
- Multiplicity: 642
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,104)\)
- Multiplicity: 2187
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,115,109)\)
- Multiplicity: 821
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,102,116)\)
- Multiplicity: 1164
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,102)\)
- Multiplicity: 3829
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,108,109)\)
- Multiplicity: 12760
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,95,116)\)
- Multiplicity: 348
- Dimension: 1
- Error: 0
\(\textbf{a}=(91,115,114)\)
- Multiplicity: 55
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,102)\)
- Multiplicity: 9214
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,95)\)
- Multiplicity: 880
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,101,109)\)
- Multiplicity: 8556
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,88,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,108,114)\)
- Multiplicity: 2134
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,102)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,95)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,107)\)
- Multiplicity: 2670
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,94,109)\)
- Multiplicity: 112
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,101,114)\)
- Multiplicity: 3568
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,100)\)
- Multiplicity: 4432
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,93)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,107)\)
- Multiplicity: 17065
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,108,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,94,114)\)
- Multiplicity: 467
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,114,112)\)
- Multiplicity: 467
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,100)\)
- Multiplicity: 3161
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,93)\)
- Multiplicity: 219
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,107)\)
- Multiplicity: 4432
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,101,119)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,107,112)\)
- Multiplicity: 6659
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,98)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,105)\)
- Multiplicity: 5663
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,94,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(89,114,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,100,112)\)
- Multiplicity: 5562
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,98)\)
- Multiplicity: 3272
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,91)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,106,105)\)
- Multiplicity: 15050
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{38,\lambda}(2,0;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{38,2}(2,0;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{38,\textbf{a}}(2,0;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!