Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(0,0,0) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
(14,2,0) |
(21,2,1) |
(27,4,1) |
(33,5,2) |
(39,5,4) |
(44,8,4) |
(49,10,5) |
(54,11,7) |
(59,11,10) |
(63,15,10) |
(67,18,11) |
(71,20,13) |
(75,21,16) |
(79,21,20) |
(82,26,20) |
(85,30,21) |
(88,33,23) |
(91,35,26) |
(94,36,30) |
(97,36,35) |
(99,42,35) |
(101,47,36) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(118,104,82) |
(119,104,89) |
(119,109,92) |
(119,113,96) |
(119,116,101) |
(119,118,107) |
(119,119,114) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
4 |
45 |
89 |
133 |
179 |
228 |
278 |
331 |
380 |
430 |
477 |
525 |
567 |
608 |
639 |
673 |
698 |
718 |
729 |
741 |
743 |
742 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
198 |
157 |
115 |
75 |
37 |
5 |
1 |
\(\lambda=(115,111,110)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(119,111,106)\)
- Multiplicity: 2
- Dimension: 405
- Dominant: No
\(\lambda=(118,113,105)\)
- Multiplicity: 2
- Dimension: 405
- Dominant: No
\(\lambda=(117,115,104)\)
- Multiplicity: 1
- Dimension: 270
- Dominant: No
\(\lambda=(114,112,110)\)
- Multiplicity: 1
- Dimension: 27
- Dominant: No
\(\lambda=(116,116,104)\)
- Multiplicity: 1
- Dimension: 91
- Dominant: No
\(\lambda=(119,110,107)\)
- Multiplicity: 2
- Dimension: 280
- Dominant: No
\(\lambda=(118,112,106)\)
- Multiplicity: 3
- Dimension: 343
- Dominant: No
\(\lambda=(117,114,105)\)
- Multiplicity: 2
- Dimension: 280
- Dominant: No
\(\lambda=(116,115,105)\)
- Multiplicity: 1
- Dimension: 143
- Dominant: No
\(\lambda=(119,109,108)\)
- Multiplicity: 1
- Dimension: 143
- Dominant: No
\(\lambda=(118,111,107)\)
- Multiplicity: 2
- Dimension: 260
- Dominant: No
\(\lambda=(117,113,106)\)
- Multiplicity: 2
- Dimension: 260
- Dominant: No
\(\lambda=(116,114,106)\)
- Multiplicity: 2
- Dimension: 162
- Dominant: No
\(\lambda=(118,118,100)\)
- Multiplicity: 1
- Dimension: 190
- Dominant: Yes
\(\lambda=(119,116,101)\)
- Multiplicity: 1
- Dimension: 640
- Dominant: Yes
\(\lambda=(118,110,108)\)
- Multiplicity: 2
- Dimension: 162
- Dominant: No
\(\lambda=(117,112,107)\)
- Multiplicity: 2
- Dimension: 216
- Dominant: No
\(\lambda=(116,113,107)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(118,117,101)\)
- Multiplicity: 1
- Dimension: 323
- Dominant: No
\(\lambda=(119,115,102)\)
- Multiplicity: 1
- Dimension: 665
- Dominant: No
\(\lambda=(117,111,108)\)
- Multiplicity: 2
- Dimension: 154
- Dominant: No
\(\lambda=(115,114,107)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(116,112,108)\)
- Multiplicity: 2
- Dimension: 125
- Dominant: No
\(\lambda=(118,116,102)\)
- Multiplicity: 2
- Dimension: 405
- Dominant: No
\(\lambda=(119,114,103)\)
- Multiplicity: 2
- Dimension: 648
- Dominant: No
\(\lambda=(117,110,109)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(115,113,108)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(116,111,109)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(118,115,103)\)
- Multiplicity: 2
- Dimension: 442
- Dominant: No
\(\lambda=(119,113,104)\)
- Multiplicity: 2
- Dimension: 595
- Dominant: No
\(\lambda=(114,114,108)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: No
\(\lambda=(115,112,109)\)
- Multiplicity: 1
- Dimension: 64
- Dominant: No
\(\lambda=(116,110,110)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: No
\(\lambda=(119,112,105)\)
- Multiplicity: 2
- Dimension: 512
- Dominant: No
\(\lambda=(118,114,104)\)
- Multiplicity: 3
- Dimension: 440
- Dominant: No
\(\lambda=(117,116,103)\)
- Multiplicity: 1
- Dimension: 224
- Dominant: No
\(\textbf{a}=(113,115,108)\)
- Multiplicity: 136
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,115)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,107)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,114)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,107)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,113)\)
- Multiplicity: 136
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,114)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,106)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,112)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,113)\)
- Multiplicity: 136
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,119)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,105)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,112)\)
- Multiplicity: 230
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,118)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,111)\)
- Multiplicity: 211
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,117)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,111)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,110)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,104)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,110)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,103)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,116)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,117)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,109)\)
- Multiplicity: 178
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,119,102)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,115)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,116)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,108)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,115)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,108)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,107)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,114)\)
- Multiplicity: 178
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,115)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,118,100)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,107)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,113)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,114)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,106)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,112)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,113)\)
- Multiplicity: 178
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,105)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,112)\)
- Multiplicity: 241
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,118)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,111)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,112)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,117)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,111)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,110)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,104)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,110)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,103)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,116)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,117)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,109)\)
- Multiplicity: 178
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,115)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,116)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,108)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,115)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,108)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,116,101)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,114)\)
- Multiplicity: 147
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,115)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,107)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,113)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,114)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,106)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,113)\)
- Multiplicity: 211
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,105)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,112)\)
- Multiplicity: 230
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,118)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,105)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,111)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,112)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,117)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,111)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,110)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,104)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,110)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,103)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,116)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,117)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,109)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,116)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,109)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,108)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,115)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,116)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,108)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,101)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,114)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,115)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,107)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,113)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,114)\)
- Multiplicity: 147
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,106)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,113)\)
- Multiplicity: 230
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,119)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,112)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,113)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,118)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,105)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,111)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,112)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,118)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,117)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,111)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,104)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,110)\)
- Multiplicity: 211
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,103)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,117)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,109)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,116)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,109)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,108)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,115,102)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,115)\)
- Multiplicity: 136
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,108)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,101)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,114)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,115)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,107)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,113)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,114)\)
- Multiplicity: 178
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,106)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,113)\)
- Multiplicity: 230
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,119)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,106)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,112)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,113)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,118)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,105)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,111)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,112)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,118)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,117)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,111)\)
- Multiplicity: 211
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,104)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,117)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,110)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,116)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,110)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,109)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,116)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,109)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,102)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,115)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,116)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,108)\)
- Multiplicity: 136
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,119,101)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,114)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,115)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,107)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,114)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,106)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,113)\)
- Multiplicity: 211
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,119)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,106)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,112)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,113)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,118)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,105)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,111)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,112)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,118)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,117)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,111)\)
- Multiplicity: 230
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,104)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,117)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,110)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,110)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,109)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,103)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,116)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,117)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,109)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,102)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,115)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,116)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,108)\)
- Multiplicity: 147
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,114)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,115)\)
- Multiplicity: 136
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,107)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,114)\)
- Multiplicity: 211
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,107)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,113)\)
- Multiplicity: 178
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,114)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,119)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,106)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,112)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,113)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,119)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,118)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,105)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,112)\)
- Multiplicity: 203
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,118)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,117)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,111)\)
- Multiplicity: 230
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,104)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,117)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,111)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,110)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,110)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,109)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,103)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,116)\)
- Multiplicity: 93
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,117)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,109)\)
- Multiplicity: 159
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,102)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,115)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,116)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{40,\lambda}(2,0;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{40,2}(2,0;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
108 |
· |
· |
· |
· |
· |
· |
· |
· |
109 |
· |
· |
· |
· |
· |
· |
1
| · |
110 |
· |
· |
· |
1
| 1
| 2
| 2
| · |
111 |
· |
· |
1
| 1
| 2
| 2
| 2
| · |
112 |
· |
1
| 1
| 2
| 2
| 3
| 2
| · |
113 |
· |
· |
1
| 1
| 2
| 2
| 2
| · |
114 |
· |
1
| 1
| 2
| 2
| 3
| 2
| · |
115 |
· |
· |
· |
1
| 1
| 2
| 1
| · |
116 |
· |
· |
· |
1
| 1
| 2
| 1
| · |
117 |
· |
· |
· |
· |
· |
1
| · |
· |
118 |
· |
· |
· |
· |
· |
1
| · |
· |
119 |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{40,\textbf{a}}(2,0;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!