Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(0,0,0) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
(14,2,0) |
(21,2,1) |
(27,4,1) |
(33,5,2) |
(39,5,4) |
(44,8,4) |
(49,10,5) |
(54,11,7) |
(59,11,10) |
(63,15,10) |
(67,18,11) |
(71,20,13) |
(75,21,16) |
(79,21,20) |
(82,26,20) |
(85,30,21) |
(88,33,23) |
(91,35,26) |
(94,36,30) |
(97,36,35) |
(99,42,35) |
(101,47,36) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(118,104,82) |
(119,104,89) |
(119,109,92) |
(119,113,96) |
(119,116,101) |
(119,118,107) |
(119,119,114) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
4 |
45 |
89 |
133 |
179 |
228 |
278 |
331 |
380 |
430 |
477 |
525 |
567 |
608 |
639 |
673 |
698 |
718 |
729 |
741 |
743 |
742 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
198 |
157 |
115 |
75 |
37 |
5 |
1 |
\(\lambda=(119,114,111)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(119,115,110)\)
- Multiplicity: 1
- Dimension: 165
- Dominant: No
\(\lambda=(119,118,107)\)
- Multiplicity: 1
- Dimension: 168
- Dominant: Yes
\(\lambda=(119,117,108)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: No
\(\lambda=(119,116,109)\)
- Multiplicity: 1
- Dimension: 192
- Dominant: No
\(\textbf{a}=(116,118,110)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,117)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,116)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,112)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,115)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,115)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,117,108)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,111)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,118)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,114)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,117)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,113)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,115,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,116)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,109)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,116)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,112)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,115)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,114)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,111)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,114)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,119,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,117)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,113)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,116)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,112)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,115)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,116)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,115)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,118,108)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,118)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,114)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,117)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,113)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,110)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,117)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,119,109)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,116)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,112)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,115)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,114)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,111)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,114)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,118,107)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,117)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,113)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,116)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,112)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,116,109)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,116)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,115)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,119,108)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,114)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,111)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,113)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,110)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,117)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,113)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,112)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,115)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,115)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,111)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,118)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,114)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,119,107)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,117)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,113)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,116)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,119)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,112)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,109)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,116)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,115)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,114)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,111)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{41,\lambda}(2,0;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{41,2}(2,0;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
118 |
119 |
120 |
113 |
· |
· |
· |
114 |
· |
1
| · |
115 |
· |
1
| · |
116 |
· |
1
| · |
117 |
· |
1
| · |
118 |
· |
1
| · |
119 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{41,\textbf{a}}(2,0;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!