Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(3,0,0) |
(10,1,0) |
(17,1,1) |
(23,3,1) |
(29,4,2) |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
? |
? |
? |
? |
? |
(58,18,7) |
(63,18,10) |
(67,21,11) |
(71,23,13) |
(75,24,16) |
(79,24,20) |
(82,29,20) |
(85,33,21) |
(88,36,23) |
(91,38,26) |
(94,39,30) |
(97,39,35) |
(99,45,35) |
(101,50,36) |
(103,54,38) |
(105,57,41) |
(107,59,45) |
(109,60,50) |
(111,60,56) |
(112,67,56) |
(113,73,57) |
(114,78,59) |
(115,82,62) |
(116,85,66) |
(117,87,71) |
(118,88,77) |
(119,88,84) |
(119,95,85) |
(119,101,87) |
? |
? |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
(118,116,97) |
(119,116,104) |
(119,118,110) |
(119,119,117) |
\(\lambda=(111,110,110)\)
- Multiplicity: 1
- Dimension: 3
- Dominant: No
\(\lambda=(114,112,105)\)
- Multiplicity: 2
- Dimension: 132
- Dominant: No
\(\lambda=(115,110,106)\)
- Multiplicity: 3
- Dimension: 165
- Dominant: No
\(\lambda=(116,108,107)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: No
\(\lambda=(118,112,101)\)
- Multiplicity: 2
- Dimension: 798
- Dominant: No
\(\lambda=(117,114,100)\)
- Multiplicity: 2
- Dimension: 570
- Dominant: No
\(\lambda=(116,116,99)\)
- Multiplicity: 1
- Dimension: 171
- Dominant: No
\(\lambda=(114,111,106)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(115,109,107)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(118,111,102)\)
- Multiplicity: 2
- Dimension: 720
- Dominant: No
\(\lambda=(117,113,101)\)
- Multiplicity: 2
- Dimension: 585
- Dominant: No
\(\lambda=(116,115,100)\)
- Multiplicity: 1
- Dimension: 288
- Dominant: No
\(\lambda=(113,112,106)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: No
\(\lambda=(114,110,107)\)
- Multiplicity: 2
- Dimension: 90
- Dominant: No
\(\lambda=(115,108,108)\)
- Multiplicity: 1
- Dimension: 36
- Dominant: No
\(\lambda=(118,110,103)\)
- Multiplicity: 3
- Dimension: 612
- Dominant: No
\(\lambda=(117,112,102)\)
- Multiplicity: 3
- Dimension: 561
- Dominant: No
\(\lambda=(116,114,101)\)
- Multiplicity: 2
- Dimension: 357
- Dominant: No
\(\lambda=(113,111,107)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\lambda=(114,109,108)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: No
\(\lambda=(118,109,104)\)
- Multiplicity: 2
- Dimension: 480
- Dominant: No
\(\lambda=(117,111,103)\)
- Multiplicity: 3
- Dimension: 504
- Dominant: No
\(\lambda=(116,113,102)\)
- Multiplicity: 2
- Dimension: 384
- Dominant: No
\(\lambda=(112,112,107)\)
- Multiplicity: 1
- Dimension: 21
- Dominant: No
\(\lambda=(113,110,108)\)
- Multiplicity: 2
- Dimension: 42
- Dominant: No
\(\lambda=(115,114,102)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: No
\(\lambda=(118,108,105)\)
- Multiplicity: 1
- Dimension: 330
- Dominant: No
\(\lambda=(118,116,97)\)
- Multiplicity: 1
- Dimension: 690
- Dominant: Yes
\(\lambda=(117,110,104)\)
- Multiplicity: 4
- Dimension: 420
- Dominant: No
\(\lambda=(116,112,103)\)
- Multiplicity: 3
- Dimension: 375
- Dominant: No
\(\lambda=(112,111,108)\)
- Multiplicity: 1
- Dimension: 24
- Dominant: No
\(\lambda=(115,113,103)\)
- Multiplicity: 1
- Dimension: 231
- Dominant: No
\(\lambda=(116,111,104)\)
- Multiplicity: 3
- Dimension: 336
- Dominant: No
\(\lambda=(118,107,106)\)
- Multiplicity: 1
- Dimension: 168
- Dominant: No
\(\lambda=(118,115,98)\)
- Multiplicity: 1
- Dimension: 792
- Dominant: No
\(\lambda=(117,109,105)\)
- Multiplicity: 2
- Dimension: 315
- Dominant: No
\(\lambda=(112,110,109)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(114,114,103)\)
- Multiplicity: 1
- Dimension: 78
- Dominant: No
\(\lambda=(115,112,104)\)
- Multiplicity: 2
- Dimension: 234
- Dominant: No
\(\lambda=(116,110,105)\)
- Multiplicity: 3
- Dimension: 273
- Dominant: No
\(\lambda=(117,116,98)\)
- Multiplicity: 1
- Dimension: 399
- Dominant: No
\(\lambda=(118,114,99)\)
- Multiplicity: 1
- Dimension: 840
- Dominant: No
\(\lambda=(117,108,106)\)
- Multiplicity: 2
- Dimension: 195
- Dominant: No
\(\lambda=(114,113,104)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(115,111,105)\)
- Multiplicity: 2
- Dimension: 210
- Dominant: No
\(\lambda=(116,109,106)\)
- Multiplicity: 2
- Dimension: 192
- Dominant: No
\(\lambda=(117,115,99)\)
- Multiplicity: 1
- Dimension: 510
- Dominant: No
\(\lambda=(118,113,100)\)
- Multiplicity: 2
- Dimension: 840
- Dominant: No
\(\textbf{a}=(109,106,116)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,115)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,102)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,109)\)
- Multiplicity: 333
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,116)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,115)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,102)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,108)\)
- Multiplicity: 166
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,109)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,115)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,114)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,108)\)
- Multiplicity: 166
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,107)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,101)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,114)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,107)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,100)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,113)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,106)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,112)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,113)\)
- Multiplicity: 279
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,106)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,105)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,112)\)
- Multiplicity: 307
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,113)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,105)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,98)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,111)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,112)\)
- Multiplicity: 101
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,117)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,104)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,110)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,111)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,117)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,116)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,103)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,110)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,116)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,115)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,109)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,110)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,116)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,115)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,102)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,108)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,109)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,115)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,114)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,108)\)
- Multiplicity: 228
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,101)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,114)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,107)\)
- Multiplicity: 263
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,100)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,113)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,106)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,113)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,106)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,105)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,99)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,112)\)
- Multiplicity: 263
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,113)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,118)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,105)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,98)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,111)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,112)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,117)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,104)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,110)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,111)\)
- Multiplicity: 307
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,117)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,116)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,103)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,110)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,116)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,103)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,109)\)
- Multiplicity: 228
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,110)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,116)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,115)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,102)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,108)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,109)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,115)\)
- Multiplicity: 101
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,114)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,108)\)
- Multiplicity: 279
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,101)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,114)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,107)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,113)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,107)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,106)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,113)\)
- Multiplicity: 279
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,114)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,106)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,99)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,112)\)
- Multiplicity: 209
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,113)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,105)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,98)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,111)\)
- Multiplicity: 75
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,112)\)
- Multiplicity: 209
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,118)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,117)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,104)\)
- Multiplicity: 101
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,111)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,117)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,116)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,103)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,110)\)
- Multiplicity: 333
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,111)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,117)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,116)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,103)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,109)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,110)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,116)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,115)\)
- Multiplicity: 101
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,102)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,108)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,109)\)
- Multiplicity: 228
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,115)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,114)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,108)\)
- Multiplicity: 307
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,101)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,114)\)
- Multiplicity: 228
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,107)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,113)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,107)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,106)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,100)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,113)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,114)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,106)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,99)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,112)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,113)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,105)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,111)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,112)\)
- Multiplicity: 263
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,118)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,117)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,104)\)
- Multiplicity: 75
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,111)\)
- Multiplicity: 366
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,117)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,116)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,104)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,110)\)
- Multiplicity: 279
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,111)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,117)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,116)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,103)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,109)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,110)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,116)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,115)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,102)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,109)\)
- Multiplicity: 287
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,115)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,114)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,108)\)
- Multiplicity: 307
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,101)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,115)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,114)\)
- Multiplicity: 228
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,108)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,107)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,107)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,106)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,100)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,113)\)
- Multiplicity: 209
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,114)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,106)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,99)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,112)\)
- Multiplicity: 101
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,113)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,105)\)
- Multiplicity: 153
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,111)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,112)\)
- Multiplicity: 307
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,117)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,104)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,111)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,112)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,118)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,117)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,97)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,104)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,110)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,111)\)
- Multiplicity: 75
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,117)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,116)\)
- Multiplicity: 75
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,103)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,109)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,110)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,116)\)
- Multiplicity: 75
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,115)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,102)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,109)\)
- Multiplicity: 333
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,115)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,114)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,108)\)
- Multiplicity: 279
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,115)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,114)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,108)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,107)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,101)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,107)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,100)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,113)\)
- Multiplicity: 161
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,114)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,106)\)
- Multiplicity: 209
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,99)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,112)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,113)\)
- Multiplicity: 209
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,105)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,112)\)
- Multiplicity: 333
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,118)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,105)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,104)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,111)\)
- Multiplicity: 307
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,112)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,117)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,97)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,104)\)
- Multiplicity: 75
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,110)\)
- Multiplicity: 149
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,111)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,117)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,116)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,103)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,109)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,110)\)
- Multiplicity: 279
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,116)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,115)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,102)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,109)\)
- Multiplicity: 347
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,116)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,115)\)
- Multiplicity: 166
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,114)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,108)\)
- Multiplicity: 228
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,109)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,115)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,114)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,108)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,107)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,101)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,114)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,107)\)
- Multiplicity: 215
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,100)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,113)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,106)\)
- Multiplicity: 209
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,112)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,113)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,105)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,112)\)
- Multiplicity: 333
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,113)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,118)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,105)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,98)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,111)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,112)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,117)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,97)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,104)\)
- Multiplicity: 101
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,110)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,111)\)
- Multiplicity: 188
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,117)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,116)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,103)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,110)\)
- Multiplicity: 333
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{39,\lambda}(2,3;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{39,2}(2,3;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
106 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
107 |
· |
· |
· |
· |
· |
· |
· |
· |
1
| · |
108 |
· |
· |
· |
· |
· |
1
| 1
| 2
| 1
| · |
109 |
· |
· |
· |
· |
1
| 1
| 2
| 2
| 2
| · |
110 |
· |
1
| 1
| 2
| 2
| 3
| 3
| 4
| 3
| · |
111 |
· |
· |
1
| 1
| 2
| 2
| 3
| 3
| 2
| · |
112 |
· |
· |
1
| 1
| 2
| 2
| 3
| 3
| 2
| · |
113 |
· |
· |
· |
· |
1
| 1
| 2
| 2
| 2
| · |
114 |
· |
· |
· |
· |
1
| 1
| 2
| 2
| 1
| · |
115 |
· |
· |
· |
· |
· |
· |
1
| 1
| 1
| · |
116 |
· |
· |
· |
· |
· |
· |
1
| 1
| 1
| · |
117 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{39,\textbf{a}}(2,3;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!