Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(3,0,0) |
(10,1,0) |
(17,1,1) |
(23,3,1) |
(29,4,2) |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
? |
? |
? |
? |
? |
(58,18,7) |
(63,18,10) |
(67,21,11) |
(71,23,13) |
(75,24,16) |
(79,24,20) |
(82,29,20) |
(85,33,21) |
(88,36,23) |
(91,38,26) |
(94,39,30) |
(97,39,35) |
(99,45,35) |
(101,50,36) |
(103,54,38) |
(105,57,41) |
(107,59,45) |
(109,60,50) |
(111,60,56) |
(112,67,56) |
(113,73,57) |
(114,78,59) |
(115,82,62) |
(116,85,66) |
(117,87,71) |
(118,88,77) |
(119,88,84) |
(119,95,85) |
(119,101,87) |
? |
? |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
(118,116,97) |
(119,116,104) |
(119,118,110) |
(119,119,117) |
\(\lambda=(118,117,104)\)
- Multiplicity: 1
- Dimension: 224
- Dominant: No
\(\lambda=(118,113,108)\)
- Multiplicity: 1
- Dimension: 216
- Dominant: No
\(\lambda=(117,114,108)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(119,110,110)\)
- Multiplicity: 1
- Dimension: 55
- Dominant: No
\(\lambda=(119,114,106)\)
- Multiplicity: 1
- Dimension: 405
- Dominant: No
\(\lambda=(118,116,105)\)
- Multiplicity: 1
- Dimension: 270
- Dominant: No
\(\lambda=(118,112,109)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(118,115,106)\)
- Multiplicity: 1
- Dimension: 280
- Dominant: No
\(\lambda=(118,111,110)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(117,112,110)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(117,116,106)\)
- Multiplicity: 1
- Dimension: 143
- Dominant: No
\(\lambda=(118,118,103)\)
- Multiplicity: 1
- Dimension: 136
- Dominant: Yes
\(\lambda=(119,116,104)\)
- Multiplicity: 1
- Dimension: 442
- Dominant: Yes
\(\lambda=(119,112,108)\)
- Multiplicity: 1
- Dimension: 260
- Dominant: No
\(\lambda=(118,114,107)\)
- Multiplicity: 1
- Dimension: 260
- Dominant: No
\(\textbf{a}=(112,109,118)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,115)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,114)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,108)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,111)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,117)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,107)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,110)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,114)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,117)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,116)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,110)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,106)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,113)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,116)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,115)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,109)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,112)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,118)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,115)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,108)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,115,105)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,111)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,112)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,117)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,104)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,111)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,114)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,117)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,110)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,107)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,113)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,114)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,116)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,109)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,106)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,113)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,115)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,109)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,119,105)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,112)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,115)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,114)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,108)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,111)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,117)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,107)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,111)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,114)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,117)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,110)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,118,103)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,113)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,116)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,109)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,112)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,113)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,115)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,108)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,105)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,112)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,118)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,117)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,115)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,119,104)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,111)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,114)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,117)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,110)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,107)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,113)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,114)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,116)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,109)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,106)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,113)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,116)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,115)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,109)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,112)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,118)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,115)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,108)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,111)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,117)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,116,104)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,107)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,111)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,114)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,117)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,116)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,110)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,113)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,116)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,109)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,106)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,112)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,113)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,115)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,108)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,105)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,112)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,118)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,115)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,114)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,108)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,111)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,117)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,110)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,107)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,113)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,114)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,117)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,116)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,110)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,106)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,113)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,119)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,115)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,109)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,112)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,118)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,115)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,108)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,111)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,112)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,117)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,104)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,107)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,111)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,114)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,117)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,110)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,113)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,116)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,109)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,106)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,112)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,113)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,118)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,115)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,105)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,112)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{40,\lambda}(2,3;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{40,2}(2,3;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
116 |
117 |
118 |
119 |
120 |
109 |
· |
· |
· |
· |
· |
110 |
· |
· |
· |
1
| · |
111 |
· |
· |
1
| · |
· |
112 |
· |
1
| 1
| 1
| · |
113 |
· |
· |
1
| · |
· |
114 |
· |
1
| 1
| 1
| · |
115 |
· |
· |
1
| · |
· |
116 |
· |
1
| 1
| 1
| · |
117 |
· |
· |
1
| · |
· |
118 |
· |
· |
1
| · |
· |
119 |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{40,\textbf{a}}(2,3;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!