Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(3,0,0) |
(10,1,0) |
(17,1,1) |
(23,3,1) |
(29,4,2) |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
? |
? |
? |
? |
? |
(58,18,7) |
(63,18,10) |
(67,21,11) |
(71,23,13) |
(75,24,16) |
(79,24,20) |
(82,29,20) |
(85,33,21) |
(88,36,23) |
(91,38,26) |
(94,39,30) |
(97,39,35) |
(99,45,35) |
(101,50,36) |
(103,54,38) |
(105,57,41) |
(107,59,45) |
(109,60,50) |
(111,60,56) |
(112,67,56) |
(113,73,57) |
(114,78,59) |
(115,82,62) |
(116,85,66) |
(117,87,71) |
(118,88,77) |
(119,88,84) |
(119,95,85) |
(119,101,87) |
? |
? |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
(118,116,97) |
(119,116,104) |
(119,118,110) |
(119,119,117) |
\(\lambda=(119,117,111)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(119,118,110)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: Yes
\(\textbf{a}=(113,116,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,115)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,113)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,114)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,116)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,115)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,118,110)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,119,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,117,111)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,116,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,115)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,119,111)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,115,113)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,114,114)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,118,112)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,113)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,114)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,116)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,117)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,115)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,119,113)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,117)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,119,110)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,115)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,118,111)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,117,112)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,115)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,118)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,113)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,116)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,114)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,119,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{41,\lambda}(2,3;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{41,2}(2,3;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
118 |
119 |
120 |
116 |
· |
· |
· |
117 |
· |
1
| · |
118 |
· |
1
| · |
119 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{41,\textbf{a}}(2,3;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
110 |
· |
· |
· |
· |
· |
· |
· |
· |
1
| 1
| · |
111 |
· |
· |
· |
· |
· |
· |
· |
2
| 3
| 2
| · |
112 |
· |
· |
· |
· |
· |
· |
2
| 4
| 4
| 2
| · |
113 |
· |
· |
· |
· |
· |
2
| 4
| 5
| 4
| 2
| · |
114 |
· |
· |
· |
· |
2
| 4
| 5
| 5
| 4
| 2
| · |
115 |
· |
· |
· |
2
| 4
| 5
| 5
| 5
| 4
| 2
| · |
116 |
· |
· |
2
| 4
| 5
| 5
| 5
| 5
| 4
| 2
| · |
117 |
· |
2
| 4
| 5
| 5
| 5
| 5
| 5
| 4
| 2
| · |
118 |
1
| 3
| 4
| 4
| 4
| 4
| 4
| 4
| 3
| 1
| · |
119 |
1
| 2
| 2
| 2
| 2
| 2
| 2
| 2
| 1
| · |
· |
120 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |